Bài 61 trang 64 SGK Toán 9 tập 2

Bình chọn:
3.7 trên 9 phiếu

Giải bài 61 trang 64 SGK Toán 9 tập 2. Tìm hai số u và v trong mỗi trường hợp sau:

Đề bài

Tìm hai số u và v trong mỗi trường hợp sau:

a) \(u + v = 12\); \(uv = 28\) và \(u > v\)                      

b) \(u + v = 3; uv = 6\)

Phương pháp giải - Xem chi tiết

Nếu S là tổng 2 số u, v; P là tích 2 số u, v thỏa mãn điều kiện \({S^2} - 4P \ge 0\) thi u, v sẽ là nghiệm của phương trình sau: \({x^2} - Sx + P = 0\)

Lời giải chi tiết

a) \(u + v = 12; uv = 28\) và \(u > v\)      

Ta có:    \({12^2} - 4.28 = 32 > 0\)

Nên \(u\) và \(v\) là hai nghiệm của phương trình:

\(x^2 – 12x + 28 = 0\)

\(\Delta'= 36 – 28 = 8\)

\( \Rightarrow {x_1} = 6 + 2\sqrt 2 ;{x_2} = 6 - 2\sqrt 2 \)

Vì \(6 + 2\sqrt 2  > 6 - 2\sqrt 2\) nên suy ra \(u = 6 + 2\sqrt 2 ;v = 6 - 2\sqrt 2\) 

b) \(u + v = 3; uv = 6\)

Ta có: \({3^2} - 4.6 =  - 15 < 0\)

Nên \(u\) và \(v\) không có giá trị nào thỏa mãn đầu bài.

 

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com