Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Đại số 9


Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Đại số 9

Đề bài

Bài 1: Cho phương trình : \({x^2} - 5x - 7 = 0.\)

a)Chứng tỏ phương trình có hai nghiệm khác dấu x1, x2.

b)Tính \(x_1^2 + x_2^2;\,\,{1 \over {x_1^2}} + {1 \over {x_2^2}}.\)

Bài 2: Giải phương trình:

a)\({x^4} - 3{x^2} - 10 = 0\)                     

b) \(\sqrt {2x - 1}  = x - 2.\)

Bài 3: Cho hàm số \(y =  - {1 \over 2}{x^2}\) có đồ thị (P) và đường thẳng \(y = 2x + m\) (d). Tìm m để (d) cắt (P) tại hai điểm phân biệt.

Bài 4: Một xe ô tô đi từ A đến B cách nhau 150 km và trở về cả thảy hết 5 giờ, biết rằng vận tốc lúc về hơn vận tốc lúc đi là 25km/h. Tính vận tốc lúc đi của ô tô.

Lời giải chi tiết

Bài 1:

a) Ta có : \(a = 1;  c = − 7  \Rightarrow  ac = − 7 < 0\)\( \Rightarrow  b^2- 4ac > 0\)

\( \Rightarrow \) Phương trình có hai nghiệm khác dấu x1, x2.

b)  Ta có : \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\)

Theo định lí Vi-ét, ta có:   \({x_1} + {x_2} = 5;\,\,\,\,{x_1}{x_2} =  - 7\)

Vậy : \(x_1^2 + x_2^2 = {5^2} - 2.\left( { - 7} \right) = 39\)

Tương tự : \({1 \over {x_1^2}} + {1 \over {x_2^2}} = {{x_1^2 + x_2^2} \over {{{\left( {{x_1}{x_2}} \right)}^2}}} = {{39} \over {49}}.\)

Bài 2: a) Đặt \(t = {x^2};t \ge 0.\) Ta có phương trình:

\({t^2} - 3t - 10 = 0 \Leftrightarrow \left[ {\matrix{   {{\rm{t}} = 5\left( {{\text{nhận}}} \right)}  \cr   {{\rm{t}} =  - 2\left( {{\text{loại}}} \right)}  \cr  } } \right.\)

Vậy : \({x^2} = 5 \Leftrightarrow x =  \pm \sqrt 5 .\)

b) \(\sqrt {2x - 1}  = x - 2 \)

\(\Leftrightarrow \left\{ \matrix{  x - 2 \ge 0 \hfill \cr  2x - 1 = {x^2} - 4x + 4 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  x \ge 2 \hfill \cr  {x^2} - 6x + 5 = 0 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  x \ge 2 \hfill \cr  \left[ \matrix{  x = 1 \hfill \cr  x = 5 \hfill \cr}  \right. \hfill \cr}  \right. \Leftrightarrow x = 5.\)

Bài 3: Phương trình hoành độ giao điểm ( nếu có) của (P) và (d) :

\( - {1 \over 2}{x^2} = 2x + m\)

\(\Leftrightarrow {x^2} + 4x + 2m = 0\,\,\,\,\,\left( * \right)\)

(d) cắt (P) tại hai điểm phân biệt khi và chỉ khi phương trình (*) có hai nghiệm phân biệt

\( \Leftrightarrow   ∆’ > 0  \Leftrightarrow  4 – 2m > 0 \Leftrightarrow  m < 2.\)

Bài 4: Gọi \(x\) là vận tốc của ô tô lúc đi ( \(x > 0, \;x\) tính bằng km/h), thì vận tốc lúc về sẽ là \(x + 25\) ( km/h).

Thời gian lúc đi là \({{150} \over x}\) ( giờ), thời gian lúc về là \({{150} \over {x + 25}}\)( giờ).

Ta có phương trình:

\({{150} \over x} + {{150} \over {x + 25}} = 5 \)

\(\Rightarrow {x^2} - 35x - 750 = 0 \)

\(\Leftrightarrow \left[ {\matrix{   {{\rm{x}} = 50\left( {{\text{nhận}}} \right)}  \cr   {{\rm{x}} =  - 15\left( {{\text{loại}}} \right)}  \cr  } } \right.\)

Vậy vận tốc của ô tô lúc đi là \(50\) km/h.

 Loigiaihay.com


Bình chọn:
2.2 trên 5 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com