Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 4 - Đại số 9


Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 4 - Đại số 9

Đề bài

Bài 1: Giải phương trình :

a) \({x^2} - 2 = 5\sqrt {{x^2} - 2}  - 6\)                   

b) \(\sqrt {1 + 4x - {x^2}}  = x - 1.\)

Bài 2: Tìm m để phương trình \({x^2} - 2x + m - 8 = 0\) có hai nghiệm x1, x2 và thỏa mãn \(3{x_1} - {x_2} = 0.\)

Bài 3: Tìm m để phương trình \({x^2} - 2mx + m - 1 = 0\) có hai nghiệm x1, x2 và \(x_1^2 + x_2^2\) đạt giá trị nhỏ nhất.

Bài 4: Cho parabol (P) : \(y =  - {1 \over 2}{x^2}.\)  Viết phương trình đường thẳng (d) qua điểm \(M(− 1; 1)\) và (d) tiếp xúc với (P).

Bài 5: Một khu vườn hình chữ nhật có chiều rộng bằng \({1 \over 3}\) chiều dài và có diện tích bằng 507m2. Tính chu vi của khu vườn.

Lời giải chi tiết

Bài 1: a) Đặt \(u = \sqrt {{x^2} - 2} ,\) điều kiện \(\left[ \matrix{  x \ge \sqrt 2  \hfill \cr  x \le  - \sqrt 2  \hfill \cr}  \right.;u \ge 0 \Rightarrow {u^2} = {x^2} - 2\)

Ta có phương trình : \({u^2} = 5u - 6 \Leftrightarrow {u^2} - 5u + 6 = 0 \)

\(\Leftrightarrow \left[ {\matrix{   {{\rm{u}} = 2\left( {{\text{nhận}}} \right)}  \cr   {{\rm{u}} = 3\left( {{\text{nhận}}} \right)}  \cr  } } \right.\)

+) \({x^2} - 2 = 4 \Leftrightarrow x =  \pm \sqrt 6 \)

+) \({x^2} - 2 = 9 \Leftrightarrow x =  \pm \sqrt {11} .\)

b) \(\sqrt {1 + 4x - {x^2}}  = x - 1 \)

\(\Leftrightarrow \left\{ \matrix{  x - 1 \ge 0 \hfill \cr  1 + 4x - {x^2} = {x^2} - 2x + 1 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  x \ge 1 \hfill \cr  2{x^2} - 6x = 0 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  x \ge 1 \hfill \cr  \left[ \matrix{  x = 0 \hfill \cr  x = 3 \hfill \cr}  \right. \hfill \cr}  \right. \Leftrightarrow x = 3.\)

Bài 2: Phương trình có nghiệm x1,x­ \(\Leftrightarrow  ∆’ ≥ 0  \Leftrightarrow 9 – m ≥ 0  \Leftrightarrow  m ≤ 9.\)

Theo định lí Vi-ét, ta có : \({x_1} + {x_2} = 2;\,\,\,\,{x_1}{x_2} = m - 8\)

Xét hệ : \(\left\{ \matrix{  3{x_1} - {x_2} = 0 \hfill \cr  {x_1} + {x_2} = 2 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {x_1} = {1 \over 2} \hfill \cr  {x_2} = {3 \over 2} \hfill \cr}  \right.\)

Khi đó : \({x_1}{x_2} = {1 \over 2}.{3 \over 2} = {3 \over 4} \)\(\;\Leftrightarrow m - 8 = {3 \over 4} \Leftrightarrow m = 8{3 \over 4}\)( nhận).

Bài 3: Phương trình có nghiệm \( \Leftrightarrow  ∆’ ≥ 0 \Leftrightarrow m^2– m + 1 ≥ 0\) ( luôn đúng với mọi m vì \({m^2}-{\rm{ }}m{\rm{ }} + 1{\rm{ }} = {\left( {m - {1 \over 2}} \right)^2} + {3 \over 4} \ge {3 \over 4}\)\(\; > 0)\)

Ta có :

\(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \)\(\;= 4{m^2} - 2m + 2 \)\(\;= {\left( {2m - {1 \over 2}} \right)^2} + {7 \over 4} \ge {7 \over 4}\)

Vậy giá trị nhỏ nhất của\(x_1^2 + x_2^2\) bằng \({7 \over 4}.\)

Dấu “=” xảy ra \( \Leftrightarrow 2m - {1 \over 2} = 0 \Leftrightarrow m = {1 \over 4}.\)

Bài 4: Phương trình đường thẳng (d) có dạng : \(y = ax + b \;( a\ne 0)\)

\(M \in (d)  \Leftrightarrow  1 = − a + b \Leftrightarrow  b = 1 + a.\) Vậy \(y = ax + a +1.\)

Phương trình hoành độ giao điểm ( nếu có) của (P  ) và (d) :

\( - {1 \over 2}{x^2} = ax + a + 1\)

\(\Leftrightarrow {x^2} + 2ax + 2a + 2 = 0\,\,\,\,\left( * \right)\)

(P  ) và (d) tiếp xúc nhau khi và chỉ khi phương trình (*) có nghiệm kép

\( \Leftrightarrow \Delta ' = 0 \Leftrightarrow {a^2} - 2a - 2 = 0 \)\(\;\Leftrightarrow a = 1 \pm \sqrt 3 \)

Phương trình đường thẳng (d) : \(y = \left( {1 \pm \sqrt 3 } \right)x + 2 \pm \sqrt 3 .\)

Bài 5: Gọi \(x\) là chiều dài của khu vườn ( \(x > 0;\; x \) tính bằng m), thì chiều rộng là \({1 \over 3}x\) . Ta có phương trình :

\({1 \over 3}x.x = 507 \Leftrightarrow {x^2} = 1521\)\(\; \Leftrightarrow x =  \pm 39\)

Vì \(x > 0\), nên ta lấy \(x = 39\).

Khi đó chu vi là : \(2\left( {39 + {1 \over 3}.39} \right) = 104\left( m \right)\)

Vậy chu vi là \(104\) ( m).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com