Bài 57 trang 63 SGK Toán 9 tập 2

Bình chọn:
4.3 trên 19 phiếu

Giải bài 57 trang 63 SGK Toán 9 tập 2. Giải các phương trình:

Đề bài

Giải các phương trình:

a) \(5{{\rm{x}}^2} - 3{\rm{x}} + 1 = 2{\rm{x}} + 11\)                     

b) \(\displaystyle {{{x^2}} \over 5} - {{2{\rm{x}}} \over 3} = {{x + 5} \over 6}\) 

c) \(\displaystyle {x \over {x - 2}} = {{10 - 2{\rm{x}}} \over {{x^2} - 2{\rm{x}}}}\)                            

d) \(\displaystyle {{x + 0,5} \over {3{\rm{x}} + 1}} = {{7{\rm{x}} + 2} \over {9{{\rm{x}}^2} - 1}}\) 

e) \(2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\)              

f) \({x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right)\) 

Phương pháp giải - Xem chi tiết

a) b) e) f) Đưa phương trình đã cho về dạng: \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.

c)  d) Sử dụng cách giải phương trình chứa ẩn ở mẫu

Lời giải chi tiết

a)

\(\eqalign{
& 5{{\rm{x}}^2} - 3{\rm{x}} + 1 = 2{\rm{x}} + 11 \cr
& \Leftrightarrow 5{{\rm{x}}^2} - 5{\rm{x}} - 10 = 0 \cr
& \Leftrightarrow {x^2} - x - 2 = 0 \cr}\)

Phương trình có \(a – b + c = 1 + 1 – 2 = 0\) nên có 2 nghiệm \({x_1}= -1; {x_2}= 2\) 

b)

\(\eqalign{
& {{{x^2}} \over 5} - {{2{\rm{x}}} \over 3} = {{x + 5} \over 6} \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 20{\rm{x}} = 5{\rm{x}} + 25 \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 25{\rm{x}} - 25 = 0 \cr
& \Delta = {25^2} + 4.6.25 = 1225 \cr
& \sqrt \Delta = 35 \Rightarrow {x_1} = 5;{x_2} = - {5 \over 6} \cr} \)

Vậy phương trình có 2 nghiệm phân biệt \({x_1} = 5;{x_2} = - {5 \over 6}\)

c) \(\displaystyle {x \over {x - 2}} = {{10 - 2{\rm{x}}} \over {{x^2} - 2{\rm{x}}}}\)  ĐKXĐ: \(x ≠ 0; x ≠ 2\) 

\(\eqalign{
& \Rightarrow {x^2} = 10 - 2{\rm{x}} \cr
& \Leftrightarrow {x^2} + 2{\rm{x}} - 10 = 0 \cr  
& \Delta ' = 1 + 10 = 11 \cr
& \Rightarrow {x_1} = - 1 + \sqrt {11} (TM) \cr
& {x_2} = - 1 - \sqrt {11} (TM) \cr} \)
Vậy phương trình đã cho có 2 nghiệm phân biệt \({x_1} = - 1 + \sqrt {11},{x_2} = - 1 - \sqrt {11}\)

d) \(\displaystyle {{x + 0,5} \over {3{\rm{x}} + 1}} = {{7{\rm{x}} + 2} \over {9{{\rm{x}}^2} - 1}}\) ĐKXĐ: \(x \ne  \pm {1 \over 3}\) 

\(\eqalign{
& \Rightarrow {{2{\rm{x}} + 1} \over {3{\rm{x}} + 1}} = {{14{\rm{x}} + 4} \over {9{{\rm{x}}^2} - 1}} \cr
& \Leftrightarrow \left( {2{\rm{x}} + 1} \right)\left( {3{\rm{x}} - 1} \right) = 14{\rm{x}} + 4 \cr
& \Leftrightarrow 6{{\rm{x}}^2} + x - 1 = 14{\rm{x}} + 4 \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 13{\rm{x}} - 5 = 0 \cr
& \Delta = {( - 13)^2} - 4.6.( - 5) = 289 \cr
& \sqrt \Delta = \sqrt {289} = 17 \cr
& \Rightarrow {x_1} = {5 \over 2}(TM) \cr
& {x_2} = - {1 \over 3}(loại) \cr} \)

Vậy phương trình đã cho có 1 nghiệm duy nhất: \(\displaystyle {x_1} = {5 \over 2}\)

e) 

\(\begin{array}{l}
2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\\
 \Leftrightarrow 2\sqrt 3 {x^2} - \left( {\sqrt 3  - 1} \right)x + 1 - \sqrt 3
\end{array}\)

\(\begin{array}{l}
\Delta  = {\left( {\sqrt 3  - 1} \right)^2} - 8\sqrt 3 \left( {1 - \sqrt 3 } \right)\\
\Delta  = 3 - 2\sqrt 3  + 1 - 8\sqrt 3  + 24\\
 = 28 - 10\sqrt 3 \\
 = {5^2} - 2.5.\sqrt 3  + {\left( {\sqrt 3 } \right)^2}\\
 = {\left( {5 - \sqrt 3 } \right)^2}
\end{array}\)

\(\begin{array}{l}
{x_1} = \dfrac{{\sqrt 3  - 1 - 5 + \sqrt 3 }}{{4\sqrt 3 }} = \dfrac{{1 - \sqrt 3 }}{2}\\
{x_2} = \dfrac{{\sqrt 3  - 1 + 5 - \sqrt 3 }}{{4\sqrt 3 }} = \dfrac{{\sqrt 3 }}{3}
\end{array}\)

Vậy phương trình đã cho có 2 nghiệm phân biệt.

f)

\(\eqalign{
& {x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right) \cr
& \Leftrightarrow {x^2} + \left( {2\sqrt 2 - 3} \right)x + 4 - 3\sqrt 2 = 0 \cr
& \Delta = 8 - 12\sqrt 2 + 9 - 16 + 12\sqrt 2 = 1 \cr
& \sqrt \Delta = 1 \cr
& \Rightarrow {x_1} = {{3 - 2\sqrt 2 + 1} \over 2} = 2 - \sqrt 2 \cr
& {x_2} = {{3 - 2\sqrt 2 - 1} \over 2} = 1 - \sqrt 2 \cr} \)

Vậy phương trình đã cho có 2 nghiệm phân biệt.

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com