Bài 58 trang 63 SGK Toán 9 tập 2


Giải bài 58 trang 63 SGK Toán 9 tập 2. Giải các phương trình

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình

LG a

\(1,2{{\rm{x}}^3} - {x^2} - 0,2{\rm{x}} = 0\)

Phương pháp giải:

Phân tích vế trái của phương trình thành nhân tử sau đó đưa phương trình về dạng phương trình tích để giải: \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)

Lời giải chi tiết:

\(1,2{{\rm{x}}^3} - {x^2} - 0,2{\rm{x}} = 0\)

\( \Leftrightarrow x\left( {1,2{{\rm{x}}^2} - x - 0,2} \right) = 0\) 

\(\Leftrightarrow \left[ \matrix{x = 0 \hfill \cr1,2{{\rm{x}}^2} - x - 0,2 = 0(*) \hfill \cr} \right.\)

Giải (*): \(1,2x^2 – x – 0,2 = 0\)

Ta có: \(a + b + c = 1,2 + (-1) + (-0,2) = 0\)  

Vậy (*) có 2 nghiệm: \(\displaystyle {x_1}= 1\); \(\displaystyle  {x_2} = {{ - 0,2} \over {1,2}} =  - {1 \over 6}\) 

Vậy phương trình đã cho có 3 nghiệm: \(\displaystyle {x_1} = 0;{x_2} = 1;{x_3} =  - {1 \over 6}\)

LG b

\(5{{\rm{x}}^3} - {x^2} - 5{\rm{x}} + 1 = 0\)

Phương pháp giải:

Phân tích vế trái của phương trình thành nhân tử sau đó đưa phương trình về dạng phương trình tích để giải: \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)

Lời giải chi tiết:

\(5{{\rm{x}}^3} - {x^2} - 5{\rm{x}} + 1 = 0\)

\(⇔ x^2(5x – 1) – (5x – 1) = 0\)

\(⇔ (5x – 1)(x^2– 1) = 0\) 

\( \displaystyle \Leftrightarrow \left[ \matrix{5{\rm{x}} - 1 = 0 \hfill \cr {x^2} - 1 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{x = \dfrac{1}{5} \hfill \cr x = \pm 1 \hfill \cr} \right.\)

Vậy phương trình đã cho có 3 nghiệm: \(\displaystyle {x_1} = {1 \over 5};{x_2} =  - 1;{x_3} = 1\)  

Loigiaihay.com


Bình chọn:
4.6 trên 17 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài