Bài 60 trang 64 SGK Toán 9 tập 2


Giải bài 60 trang 64 SGK Toán 9 tập 2. Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:

LG a

\(\displaystyle 12{{\rm{x}}^2} - 8{\rm{x}} + 1 = 0;{x_1} = {1 \over 2}\) 

Phương pháp giải:

Phương pháp: Sử dụng hệ thức Viet để tìm nghiệm còn lại của phương trình:

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Lời giải chi tiết:

\(\displaystyle 12{{\rm{x}}^2} - 8{\rm{x}} + 1 = 0;{x_1} = {1 \over 2}\)               

Ta có: \(\displaystyle {x_1}{x_2} = {1 \over {12}} \Leftrightarrow {1 \over 2}{x_2} = {1 \over {12}} \Leftrightarrow {x_2} = {1 \over 6}\)

LG b

\(2{{\rm{x}}^2} - 7{\rm{x}} - 39 = 0;{x_1} =  - 3\) 

Phương pháp giải:

Phương pháp: Sử dụng hệ thức Viet để tìm nghiệm còn lại của phương trình:

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Lời giải chi tiết:

\(2{{\rm{x}}^2} - 7{\rm{x}} - 39 = 0;{x_1} =  - 3\) 

Ta có: \(\displaystyle {x_1}.{x_2} = {{ - 39} \over 2} \Leftrightarrow  - 3{{\rm{x}}_2} = {{ - 39} \over 2}\\ \Leftrightarrow \displaystyle {x_2} = {{13} \over 2}\)

LG c

\({x^2} + x - 2 + \sqrt 2  = 0;{x_1} =  - \sqrt 2 \)

Phương pháp giải:

Phương pháp: Sử dụng hệ thức Viet để tìm nghiệm còn lại của phương trình:

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Lời giải chi tiết:

\({x^2} + x - 2 + \sqrt 2  = 0;{x_1} =  - \sqrt 2 \)

Ta có:  

\(\eqalign{
& {x_1}.{x_2} = \sqrt 2 - 2 \cr 
& \Leftrightarrow - \sqrt 2 .{x_2} = \sqrt 2 - 2 \cr 
& \Leftrightarrow {x_2} = {{\sqrt 2 - 2} \over { - \sqrt 2 }} = {{\sqrt 2 \left( {1 - \sqrt 2 } \right)} \over { - \sqrt 2 }} = \sqrt 2 - 1 \cr} \)

LG d

\({x^2} - 2m{\rm{x}} + m - 1 = 0;{x_1} = 2\) 

Phương pháp giải:

Phương pháp: Sử dụng hệ thức Viet để tìm nghiệm còn lại của phương trình:

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Lời giải chi tiết:

\({x^2} - 2m{\rm{x}} + m - 1 = 0\, \, (1);{x_1} = 2\)

Vì \({x_1} = 2\) là một nghiệm của pt (1) nên

\(2^2- 2m.2 + m - 1 = 0\)

\(⇔ m = 1\)

Khi \(m = 1\) ta có: \({x_1}{x_2} = m - 1\) (hệ thức Vi-ét)

\(⇔ 2.{x_2}= 0\) (vì \({x_1} = 2\) và \(m = 1\))

\(⇔ {x_2}= 0\)

Loigiaihay.com


Bình chọn:
3.8 trên 15 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài