Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 4 - Đại số 9

Bình chọn:
3.2 trên 6 phiếu

Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 4 - Đại số 9

Đề bài

Bài 1: Giải phương trình:

a) \(\left( {{x^2} - 1} \right)\sqrt {2x - 1}  = 0\)                     

b) \(25{x^4} + 21{x^2} - 4 = 0\)

c) \(4{x^2} - 9 = 0.\)

Bài 2: Cho parabol (P) : \(y =  - {1 \over 2}{x^2}\) và đường thẳng (d): \(y = 2x + m.\) Tính m để (d) và (P) tiếp xúc với nhau.

Bài 3: Cho phương trình : \(2{x^2} - 4x + m - 3 = 0.\)

Tìm m để phương trình có hai nghiệm phân biệt x1, x2 và thỏa mãn \(x_1^2 + x_2^2 + {x_1}{x_2} = 8.\)

Bài 4: Một ca nô chạy từ A đến B và trở về hết tất cả 3 giờ. Tính vận tốc của ca nô khi đi từ A đến B, biết vận tốc lúc đi hơn lúc về là 15 km/h và đoạn sông dài 30km.

Lời giải chi tiết

Bài 1: a) Ta có : \(\left( {{x^2} - 1} \right)\sqrt {2x - 1}  = 0\)

\( \Leftrightarrow \left\{ \matrix{  2x - 1 \ge 0 \hfill \cr  \left[ \matrix{  {x^2} - 1 = 0 \hfill \cr  2x - 1 = 0 \hfill \cr}  \right. \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x \ge {1 \over 2} \hfill \cr  \left[ \matrix{  x = 1 \hfill \cr  x = {1 \over 2} \hfill \cr}  \right. \hfill \cr}  \right. \)

\(\Leftrightarrow \left[ \matrix{  x = 1 \hfill \cr  x = {1 \over 2}. \hfill \cr}  \right.\)

b) Đặt \(t = {x^2};t \ge 0.\) Ta có phương trình :

\(25{t^2} + 21t - 4 = 0\)\(\; \Leftrightarrow \left[ {\matrix{   {{\rm{t}} =  - 1\left( {{\text{loại}}} \right)}  \cr   {{\rm{t}} = {4 \over {25}}\left( {{\text{nhận}}} \right)}  \cr  } } \right.\)

Vậy \({x^2} = {4 \over {25}} \Leftrightarrow x =  \pm {2 \over 5}.\)

c) \(4{x^4} - 9 = 0 \Leftrightarrow {x^4} = {9 \over 4} \Leftrightarrow {x^2} = {3 \over 2} \)

\(\Leftrightarrow x =  \pm \sqrt {{3 \over 2}}  \Leftrightarrow x =  \pm {{\sqrt 6 } \over 2}.\)

Bài 2: Phương trình hoành độ điểm chung ( nếu có) của (P) và (d) :

\( - {1 \over 2}{x^2} = 2x + m \)\(\;\Leftrightarrow {x^2} + 4x + 2m = 0\left( * \right)\)

(P) và (d) tiếp xúc nhau khi và chỉ khi phương trình (*) có nghiệm kép

\( \Leftrightarrow  ∆’ = 0 \Leftrightarrow  4 – 2m = 0  \Leftrightarrow  m = 2.\)

Bài 3: Phương trình có hai nghiệm phân biệt x1, x2 \(\Leftrightarrow   ∆’ > 0  \Leftrightarrow  10 – 2m > 0 \Leftrightarrow  m < 5.\)

Theo định lí Vi-ét, ta có : \({x_1} + {x_2} = 2;\,\,\,\,{x_1}{x_2} = {{m - 3} \over 2}\)

Khi đó : \(x_1^2 + x_2^2 + {x_1}{x_2} = 8 \)

\(\Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - {x_1}{x_2} = 8\)

\( \Leftrightarrow 4 - {{m - 3} \over 2} = 8 \Leftrightarrow m =  - 5\) ( nhận).

Bài 4: Gọi \(x\) là vận tốc lúc đi của ca nô ( \(x > 0,\; x\) tính bằng km/h), vận tốc lúc về sẽ là \(x – 15\) ( km/h) (\( x > 15\)).

Ta có phương trình : \({{30} \over x} + {{30} \over {x - 15}} = 3 \)

\(\Rightarrow {x^2} - 35x + 150 = 0\)

\(\Leftrightarrow \left[ {\matrix{   {{\rm{x}} = 30\left( {{\text{nhận}}} \right)}  \cr   {{\rm{x}} = 5\left( {{\text{loại}}} \right)}  \cr  } } \right.\)

Vậy vận tốc lúc đi của ca nô là 30 (km/h).

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay