Bài 54 trang 59 SGK Toán 8 tập 1


Tìm các giá trị của x để giá trị của các phân thức sau được xác định :

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giá trị của \(x\) để giá trị của các phân thức sau được xác định :

LG a.

\(\eqalign{
& \,\,\,{{3x + 2} \over {2{x^2} - 6x}} \cr} \)

Phương pháp giải:

Điều kiện xác định của phân thức là mẫu thức khác \(0\).

Lời giải chi tiết:

Điều kiện xác định của phân thức:\(\dfrac{{3x + 2}}{{2{x^2} - 6x}}\) là:

  \(2{x^2} - 6x \ne 0\)\(\Rightarrow 2x\left( {x - 3} \right) \ne 0\)

\( \Rightarrow 2x \ne 0\) và \(x - 3 \ne 0\)

\( \Rightarrow x \ne 0\) và \(x  \ne 3\)

Vậy phân thức xác định khi và chỉ khi \(x \ne 0\) và \( x \ne 3\) .

Câu 2

\(\eqalign{
& \,\,{5 \over {{x^2} - 3}} \cr} \)

Phương pháp giải:

Điều kiện xác định của phân thức là mẫu thức khác \(0\).

Lời giải chi tiết:

Điều kiện xác định của phân thức: \(\dfrac{5}{{{x^2} - 3}}\) là:

\({x^2} - 3\ne 0\)\(  \Rightarrow {x^2} - {\left( {\sqrt 3 } \right)^2} \ne 0\)\(  \Rightarrow \left( {x - \sqrt 3 } \right)\left( {x + \sqrt 3 } \right) \ne 0\)

\( \Rightarrow  x - \sqrt 3 \ne 0\) và \(x + \sqrt 3 \ne 0\)

\( \Rightarrow  x \ne \sqrt 3\) và \(x \ne - \sqrt 3 \)

Vậy phân thức xác định khi và chỉ khi \(x \ne  - \sqrt 3\) và \( x \ne \sqrt 3 \)

Loigiaihay.com


Bình chọn:
4.4 trên 81 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí