Bài 52 trang 58 SGK Toán 8 tập 1>
Chứng tỏ rằng với x≠0 và x≠±a (a là một số nguyên), giá trị của biểu thức là một số chẵn.
Đề bài
Chứng tỏ rằng với \(x \ne 0\) và \(x \ne \pm a\) (\(a\) là một số nguyên), giá trị của biểu thức
\(\left( {a - \dfrac{{{x^2} + {a^2}}}{{x + a}}} \right).\left( {\dfrac{{2a}}{x} - \dfrac{{4a}}{{x - a}}} \right)\) là một số chẵn.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Tìm điều kiện xác định của phân thức là mẫu thức khác \(0\).
- Chứng tỏ biểu thức có giá trị dạng \(2k\) (\(k\) là một số nguyên)
Lời giải chi tiết
Điều kiện của biến để giá trị của biểu thức được xác định là : \(x \ne 0,x \ne \pm a\) ( \(a\) là một số nguyên)
Ta có:
\(\eqalign{
& \left( {a - {{{x^2} + {a^2}} \over {x + a}}} \right).\left( {{{2a} \over x} - {{4a} \over {x - a}}} \right) \cr
& = {{a\left( {x + a} \right) - \left( {{x^2} + {a^2}} \right)} \over {x + a}}.{{2a\left( {x - a} \right) - 4a.x} \over {x\left( {x - a} \right)}} \cr
& = {{ax + {a^2} - {x^2} - {a^2}} \over {x + a}}.{{2ax - 2{a^2} - 4ax} \over {x\left( {x - a} \right)}} \cr
& = {{ax - {x^2}} \over {x + a}}.{{ - 2{a^2} - 2ax} \over {x\left( {x - a} \right)}} \cr
& = {{x\left( {a - x} \right)} \over {x + a}}.{{2a\left( { - a - x} \right)} \over {x\left( {x - a} \right)}} \cr
& = {{x\left( {a - x} \right).2a\left( { - a - x} \right)} \over {x\left( {x + a} \right)\left( {x - a} \right)}} \cr& = {{x\left[- {(x - a)} \right].[-2a\left( { x+a} \right)]} \over {x\left( {x + a} \right)\left( {x - a} \right)}} \cr
& = {{2ax\left( {x - a} \right)\left( {a + x} \right)} \over {x\left( {x + a} \right)\left( {x - a} \right)}} = 2a \cr} \)
Vì \(a\) là số nguyên nên \(2a\) là số chẵn.
Vậy giá trị của biểu thức đã cho là một số chẵn.
Loigiaihay.com
- Bài 53 trang 58 SGK Toán 8 tập 1
- Bài 54 trang 59 SGK Toán 8 tập 1
- Bài 55 trang 59 SGK Toán 8 tập 1
- Bài 56 trang 59 SGK Toán 8 tập 1
- Đề kiểm tra 15 phút - Đề số 1 - Bài 9 - Chương 2 - Đại số 8
>> Xem thêm