Bài 46 trang 57 SGK Toán 8 tập 1


Biến đổi mỗi biểu thức sau thành một phân thức đại số:

Đề bài

Biến đổi mỗi biểu thức sau thành một phân thức đại số:

a) \( \dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}\);

b) \( \dfrac{1-\dfrac{2}{x+1}}{1-\dfrac{x^{2}-2}{x^{2}-1}}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc chia hai phân thức:

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

Lời giải chi tiết

a) \( \dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}\)

\( = \left( {1 + \dfrac{1}{x}} \right):\left( {1 - \dfrac{1}{x}} \right)\)

\(= \dfrac{x+1}{x}:\dfrac{x-1}{x}\)

\(=\dfrac{x+1}{x}.\dfrac{x}{x-1}=\dfrac{x+1}{x-1}\)

b) \( \dfrac{1-\dfrac{2}{x+1}}{1-\dfrac{x^{2}-2}{x^{2}-1}}\)

\(  = \left( {1 - \dfrac{2}{{x + 1}}} \right):\left( {1 - \dfrac{{{x^2} - 2}}{{{x^2} - 1}}} \right)\)

\(  = \left( {\dfrac{x+1}{{x + 1}} - \dfrac{2}{{x + 1}}} \right):\left( {\dfrac{{{x^2} - 1}}{{{x^2} - 1}} - \dfrac{{{x^2} - 2}}{{{x^2} - 1}}} \right)\)

\( =\dfrac{x+1-2}{x+1}:\dfrac{x^{2}-1-(x^{2}-2)}{x^{2}-1}\)

\( =\dfrac{x-1}{x+1}:\dfrac{x^{2}-1-x^{2}+2}{x^{2}-1}\)

\(=\dfrac{x-1}{x+1}:\dfrac{1}{(x-1)(x+1)}\)

\( =\dfrac{x-1}{x+1}.\dfrac{(x-1)(x+1)}{1}= (x-1)^{2}\).

Loigiaihay.com


Bình chọn:
4.5 trên 168 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí