Bài 44 trang 80 - Sách giáo khoa toán 8 tập 2

Bình chọn:
4.1 trên 58 phiếu

Bài 44. Cho tam giác ABC có các cạnh AB= 24cm, AC = 28cm. Tia phân giác của góc A cắt cạnh BC tại D. Gọi M,N theo thứ tự là hình chiếu của B và C trên AD.

Bài 44. Cho tam giác ABC có các cạnh AB= 24cm, AC = 28cm. Tia phân giác của góc A cắt cạnh BC tại D. Gọi M,N theo thứ tự là hình chiếu của B và C trên AD.

a) Tính tỉ số \(\frac{BM}{CN}\)

b) Chứng minh rằng \(\frac{AM}{AN}\) = \(\frac{DM}{DN}\)

Giải:

a) AD là đường phân giác của ∆ABC

=> \(\frac{DB}{DC}\) = \(\frac{AB}{AC}\) = \(\frac{DB}{DC}\) = \(\frac{24}{28}\) = \(\frac{6}{7}\)

Mà BM // CN (cùng vuông góc với AD).

=> ∆BMD ∽ ∆CND => \(\frac{BM}{CN}\) = \(\frac{BD}{CD}\) 

Vậy \(\frac{BM}{CN}\) = \(\frac{6}{7}\)

b) ∆ABM và ∆ACN có: \(\widehat{ABM}\) = \(\widehat{CAN}\)

\(\widehat{BMA}\) = \(\widehat{CNA}\) = 900

=> ∆ABM ∽ ∆ACN => \(\frac{AM}{AN}\) = \(\frac{AB}{AC}\).

mà  \(\frac{AB}{AC}\) = \(\frac{DB}{DC}\) (cmt)

và \(\frac{BD}{CD}\) = \(\frac{DM}{DN}\)

=> \(\frac{AM}{AN}\) = \(\frac{DM}{DN}\)

 




Đã có lời giải Sách bài tập - Toán lớp 8 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan