Bài 37 trang 79 SGK Toán 8 tập 2


Giải bài 37 trang 79 SGK Toán 8 tập 2. Hình 44 cho biết

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Hình 44 cho biết \(\widehat{EBA} = \widehat{BDC}\).

LG a.

Trong hình vẽ, có bao nhiêu tam giác vuông? Hãy kể tên các tam giác đó.

Phương pháp giải:

Áp dụng: Tam giác có 1 góc vuông là tam giác vuông.

Giải chi tiết:

Ta có: \(\widehat{EBA} = \widehat{BDC}\) (giả thiết) mà \(\widehat{BDC} + \widehat{CBD}={90^0}\) (do tam giác BCD vuông tại C) 

\( \Rightarrow \widehat{EBA} + \widehat{CBD}={90^0}\) 

Vậy \(\widehat{EBD} = {180^0} - (\widehat{EBA}+ \widehat{CBD})\)\(\, = {180^o} - {90^o} = {90^o}\)

Vậy trong hình vẽ có ba tam giác vuông đó là:

\(∆ABE, ∆CBD, ∆EBD.\) 

LG b.

Cho biết \(AE = 10cm, AB = 15cm, BC = 12cm\). Hãy tính độ dài các đoạn thẳng \(CD, BE, BD\) và \(ED\) (làm tròn đến chữ số thập phân thứ nhất).

Phương pháp giải:

Áp dụng:

- Định lí: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

- Tính chất hai tam giác đồng dạng.

- Định lí Pitago.

Giải chi tiết:

\(∆ABE\) và \(∆CDB\) có:

\(\widehat{A} = \widehat{C}=90^o\)

\(\widehat{ABE}= \widehat{CDB}\) (giả thiết)

\( \Rightarrow  ∆ABE ∽ ∆CDB\) (g-g)

\( \Rightarrow \dfrac{AB}{CD} = \dfrac{AE}{CB}\) (tính chất hai tam giác đồng dạng)

\( \Rightarrow CD = \dfrac{AB.CB}{AE} = 18\, (cm)\)

- Áp dụng định lí pitago ta có:

\( ∆ABE\) vuông tại \(A\)

\( \Rightarrow  BE = \sqrt{AE^{2}+AB^{2}}\) \(\,=\sqrt{10^{2}+15^{2}}\) \( \approx  18\, (cm)\).

 \(∆BCD\) vuông tại \(C\)

\( \Rightarrow BD = \sqrt {B{C^2} + D{C^2}}  \) \(= \sqrt {{{12}^2} + {{18}^2}}  \approx 21,6\,\,cm\)

\(∆EBD\) vuông tại \(B\)

\( \Rightarrow  ED = \sqrt{EB^{2}+BD^{2}}\) \(=\sqrt{325+ 468} \approx 28,2\, (cm)\)

LG c.

So sánh diện tích tam giác \(BDE\) với tổng diện tích hai tam giác \(AEB\) và \(BCD\).

Phương pháp giải:

Sử dụng: Công thức tính diện tích tam giác, diện tích hình thang.

Giải chi tiết:

Ta có: 

\(S_{ABE} + S_{DBC}\)

\(= \dfrac{1}{2}AE.AB + \dfrac{1}{2}BC.CD\) 

\(= \dfrac{1}{2}. 10.15 + \dfrac{1}{2}.12.18\)

\(= 75 + 108 = 183\;cm^2\).

Ta có: \(A{\rm{E}}//DC\,\,\left(\text{ cùng } { \bot AC} \right) \Rightarrow \) \(ACDE\) là hình thang.

\(S_{ACDE} = \dfrac{1}{2}.(AE + CD).AC\)

\(= \dfrac{1}{2}.(10 + 18).27= 378\;cm^2\)

\( \Rightarrow S_{EBD} = S_{ACDE} - (S_{ABE}+ S_{DBC})\)\(\; = 378 - 183 = 195\,cm^2\)

\(S_{EBD}> S_{ABE} + S_{DBC}\) \(( 195 > 183)\).

Cách khác: 

Các em có thể thay độ dài BE, BD tính được ở câu b để tính diện tích tam giác EBD.

Loigiaihay.com


Bình chọn:
4.1 trên 177 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2020 - 2021, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài