Bài 35 trang 79 SGK Toán 8 tập 2


Giải bài 35 trang 79 SGK Toán 8 tập 2. Chứng minh rằng nếu tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng K

Đề bài

Chứng minh rằng nếu tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\) theo tỉ số \(k\) thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng \(k\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng:

- Định lí: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đô đồng dạng.

- Tính chất hai tam giác đồng dạng, tia phân giác.

Lời giải chi tiết

Gọi \(AD, A'D'\) lần lượt là đường phân giác của hai tam giác \(ABC;\,A'B'C'\)

Ta có: \(∆A'B'C' ∽ ∆ABC\) theo tỉ số \(k= \dfrac{A'B'}{AB}\) 

\( \Rightarrow \widehat {BAC} = \widehat {B'A'C'}\)   (1) (tính chất hai tam giác đồng dạng)

\(AD\) là phân giác góc \(\widehat {BAC}\) (gt)

\( \Rightarrow\) \(\widehat {BAD} = \dfrac{1}{2}\widehat {BAC}\)     (2) (tính chất tia phân giác)

\(A'D'\) là phân giác góc \(\widehat {B'A'C'}\) (gt)

\( \Rightarrow\)  \(\widehat {B'A'D'} =\dfrac{1}{2}\widehat {B'A'C'}\)   (3) (tính chất tia phân giác)

Từ \((1),(2)\) và \((3)\) suy ra: \(\widehat{BAD}\) = \(\widehat{B'A'D'}\)

Xét \(∆A'B'D'\) và \(∆ABD\) có:

+) \(\widehat{B}\) = \(\widehat{B'}\) (vì \(∆A'B'C' ∽ ∆ABC\))

+) \(\widehat{BAD}\) = \(\widehat{B'A'D'}\) (chứng minh trên)

\(\Rightarrow ∆A'B'D' ∽ ∆ABD\) (g-g) 

\(  \Rightarrow \dfrac{A'D'}{AD}=\dfrac{A'B'}{AB}=k\)

Loigiaihay.com


Bình chọn:
4.2 trên 177 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài