Trả lời câu hỏi 2 Bài 2 trang 60 Toán 8 Tập 2

Bình chọn:
4.9 trên 7 phiếu

Trả lời câu hỏi 2 Bài 2 trang 60 Toán 8 Tập 2. Quan sát hình 9. a) Trong hình đã cho có bao nhiêu cặp đường thẳng song song với nhau?...

Đề bài

Quan sát hình 9.

a) Trong hình đã cho có bao nhiêu cặp đường thẳng song song với nhau?

b) Tứ giác \(BDEF\) là hình gì?

c) So sánh các tỉ số \(\dfrac{{AD}}{{AB}};\dfrac{{AE}}{{AC}};\dfrac{{DE}}{{BC}}\) và cho nhận xét về mối liên hệ giữa các cặp cạnh tương ứng của hai tam giác \(ADE\) và \(ABC\).

Phương pháp giải - Xem chi tiết

Sử dụng định lí Ta-lét đảo; dấu hiệu nhận biết, tính chất hình bình hành

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}\dfrac{{AD}}{{AB}} = \dfrac{3}{{3 + 6}} = \dfrac{3}{9} = \dfrac{1}{3}\\\dfrac{{AE}}{{AC}} = \dfrac{5}{{5 + 10}} = \dfrac{5}{{15}} = \dfrac{1}{3}\\ \Rightarrow \dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}}\end{array}\)

Theo định lí Ta- lét đảo thì \(DE//BC\)

\(\begin{array}{l}\dfrac{{CE}}{{CA}} = \dfrac{{10}}{{10 + 5}} = \dfrac{{10}}{{15}} = \dfrac{2}{3}\\\dfrac{{CF}}{{CB}} = \dfrac{{14}}{{14 + 7}} = \dfrac{{14}}{{21}} = \dfrac{2}{3}\\ \Rightarrow \dfrac{{CE}}{{CA}} = \dfrac{{CF}}{{CB}}\end{array}\)  

Theo định lí Ta-lét đảo thì \(EF//AB\)

Trong hình vẽ đã cho có 2 cặp đường thẳng song song với nhau.

b) Tứ giác \(BDEF\) có \(BD//EF;DE//BF\)  nên \(BDEF\) là hình bình hành.

c) Vì \(BDEF\) là hình bình hành nên \(DE = BF = 7\)  (Tính chất hình bình hành).

Ta có: \(\dfrac{{DE}}{{BC}} = \dfrac{7}{{7 + 14}} = \dfrac{1}{3}\)

Do đó: \(\dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}} = \dfrac{{DE}}{{BC}} = \dfrac{1}{3}\)

Nhận xét: Hai tam giác \(ADE\)  và \(ABC\)  có các cặp cạnh tương ứng tỉ lệ.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Bài 2. Định lí đảo và hệ quả của định lí Ta - let

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu