Bài 10 trang 63 SGK Toán 8 tập 2

Bình chọn:
4.1 trên 149 phiếu

Giải bài 10 trang 63 SGK Toán 8 tập 2. Tam giác ABC có đường cao AH. Đường thẳng d song song với BC, cắt các cạnh AB,AC và đường cao AH theo thứ tự tại các điểm B', C' và H'(h.16)

Đề bài

∆ABC có đường cao AH. Đường thẳng d song song với BC, cắt các cạnh AB, AC và đường cao AH theo thứ tự tại các điểm B', C' và H'(h.16)

a) Chứng minh rằng:

\(\frac{AH'}{AH}\) = \(\frac{B'C'}{BC}\).

b) Áp dụng: Cho biết AH' = \(\frac{1}{3}\) AH và diện tích ∆ABC là 67.5 cm2

Tính diện tích ∆AB'C'.

Phương pháp giải - Xem chi tiết

Áp dụng: Hệ quả của định lý TaLet và công thức tính diện tích tam giác.

Lời giải chi tiết

a) Chứng minh \(\frac{AH'}{AH}\) = \(\frac{B'C'}{BC}\) 

Vì B'C' // BC => \(\frac{B'C'}{BC}\) = \(\frac{AB'}{AB}\)   (1) (định lý TaLet)

Trong ∆ABH có BH' // BH => \(\frac{AH'}{AH}\) = \(\frac{AB'}{BC}\)  (2) (định lý TaLet)

Từ (1) và (2) => \(\frac{B'C'}{BC}\) = \(\frac{AH'}{AH}\)

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của ∆AB'C'.

Áp dụng kết quả câu a) ta có: AH' = \(\frac{1}{3}\) AH

\(\frac{B'C'}{BC}\) = \(\frac{AH'}{AH}\) = \(\frac{1}{3}\) => B'C' = \(\frac{1}{3}\) BC

=> SAB’C’= \(\frac{1}{2}\) AH'.B'C' = \(\frac{1}{2}\).\(\frac{1}{3}\)AH.\(\frac{1}{3}\)BC

=>SAB’C’= (\(\frac{1}{2}\)AH.BC)\(\frac{1}{9}\)

mà SABC= \(\frac{1}{2}\)AH.BC = 67,5 cm2

Vậy SAB’C’= \(\frac{1}{9}\).67,5= 7,5 cm2

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan