Trả lời câu hỏi 1 Bài 2 trang 59 SGK Toán 8 Tập 2


Đề bài

Tam giác \(ABC\) có \(AB=6cm\); \(AC=9cm\).

Lấy trên cạnh \(AB\) điểm \(B'\), trên cạnh \(AC\) điểm \(C'\) sao cho \(AB'=2cm\); \(AC'=3cm\) (h8)

1) So sánh các tỉ số \(\dfrac{{AB'}}{{AB}}\) và \(\dfrac{{AC'}}{{AC}}\).

2) Vẽ đường thẳng \(a\) đi qua \(B'\) và song song với \(BC\), đường thẳng \(a\) cắt \(AC\) tại điểm \(C''\).

a) Tính độ dài đoạn thẳng \(AC''\).

b) Có nhận xét gì về \(C'\) và \(C''\) và về hai đường thẳng \(BC\) và \(B'C'\)?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

1) Tính tỉ số đoạn thẳng rồi so sánh.

2) Sử dụng đinh lí Ta-lét 

Lời giải chi tiết

1)

\(\begin{array}{l}\dfrac{{AB'}}{{AB}} = \dfrac{2}{6} = \dfrac{1}{3}\\\dfrac{{AC'}}{{AC}} = \dfrac{3}{9} = \dfrac{1}{3}\\ \Rightarrow \dfrac{{AB'}}{{AB}} = \dfrac{{AC'}}{{AC}}\end{array}\)

2)

a) Vì \(B'C''//BC\) , theo định lí Ta-lét ta có:

\(\dfrac{{AB'}}{{AB}} = \dfrac{{AC''}}{{AC}} = \dfrac{1}{3}\)

\( \Rightarrow AC'' = \dfrac{1}{3}AC = \dfrac{1}{3}.9 = 3\,cm\)

b) Ta có: \(AC' = AC'' = 3\,cm \Rightarrow C' \equiv C''\)

Do \(C' \equiv C'' \Rightarrow B'C' \equiv B'C''\)  nên \(B'C'//BC\)

Loigiaihay.com


Bình chọn:
4.7 trên 27 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài