Lý thuyết phép trừ các phân thức đại số


1. Phân thức đối.

1. Phân thức đối

Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng \(0\).

Phân thức đối của phân thức \( \dfrac{A}{B}\) được kí hiệu là \( -\dfrac{A}{B}\)

Vậy \( -\dfrac{A}{B} =\dfrac{-A}{B}\) và \( -\dfrac{-A}{B}=\dfrac{A}{B}\)

Ví dụ: \(\dfrac{x}{x-2}\) là phân thức đối của phân thức \(\dfrac{-x}{x-2}\)

2. Phép trừ

Quy tắc: Muốn trừ phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\), ta cộng \( \dfrac{A}{B}\) với phân thức đối của \( \dfrac{C}{D}\)

Vậy: \( \dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left( { - \dfrac{C}{D}} \right)\).

Ví dụ: 

\( \dfrac{4x-1}{3x^{2}y}-\dfrac{7x-1}{3x^{2}y}\) \( =\dfrac{4x-1}{3x^{2}y}+\dfrac{-(7x-1)}{3x^{2}y}\)

\( =\dfrac{4x-1-7x+1}{3x^{2}y}\) \( =\dfrac{-3x}{3x^{2}y}=-\dfrac{1}{xy}\). 

Loigiaihay.com


Bình chọn:
4.3 trên 42 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.