Lý thuyết phép trừ các phân thức đại số


1. Phân thức đối.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

1. Phân thức đối

Hai phân thức được gọi là đối nhau nếu tổng của chúng bằng \(0\).

Phân thức đối của phân thức \( \dfrac{A}{B}\) được kí hiệu là \( -\dfrac{A}{B}\)

Vậy \( -\dfrac{A}{B} =\dfrac{-A}{B}\) và \( -\dfrac{-A}{B}=\dfrac{A}{B}\)

Ví dụ: \(\dfrac{x}{x-2}\) là phân thức đối của phân thức \(\dfrac{-x}{x-2}\)

2. Phép trừ

Quy tắc: Muốn trừ phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\), ta cộng \( \dfrac{A}{B}\) với phân thức đối của \( \dfrac{C}{D}\)

Vậy: \( \dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left( { - \dfrac{C}{D}} \right)\).

Ví dụ: 

\( \dfrac{4x-1}{3x^{2}y}-\dfrac{7x-1}{3x^{2}y}\) \( =\dfrac{4x-1}{3x^{2}y}+\dfrac{-(7x-1)}{3x^{2}y}\)

\( =\dfrac{4x-1-7x+1}{3x^{2}y}\) \( =\dfrac{-3x}{3x^{2}y}=-\dfrac{1}{xy}\). 


Bình chọn:
4.3 trên 45 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí