Lý thuyết đối xứng tâm


Hai điểm gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó

I. Các kiến thức cần nhớ 

1. Hai điểm đối xứng qua một điểm

Định nghĩa: Hai điểm  $A$, $B$ gọi là đối xứng với nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.

Quy ước: Điểm đối xứng với điểm $O$ qua điểm $O$ cũng là điểm $O$

Ví dụ:  \(B\) đối xứng với \(A\) qua \(O\) nếu \(O\) là trung điểm của \(AB\)

2. Hai hình đối xứng qua một điểm

Định nghĩa: Hai hình gọi là đối xứng với nhau qua điểm $O$ nếu mỗi điểm thuộc hình này đối xứng với mỗi điểm thuộc hình kia qua điểm $O$ và ngược lại. Điểm $O$ gọi là tâm đối xứng của hai hình đó.

Chú ý: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

3. Hình có tâm đối xứng

Định nghĩa: Điểm $O$ gọi là tâm đối xứng của hình $H$ nếu điểm đối xứng với mỗi điểm thuộc hình $H$ qua điểm $O$ cũng thuộc hình $H$ . Ta nói hình $H$ có tâm đối xứng.

Định lý: Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Ví dụ: Giao điểm $O$ của \(AC\) và \(BD\) là tâm của hình bình hành \(ABCD.\)

2. Các dạng toán thường gặp

Dạng 1: Tính độ dài cạnh, chu vi tam giác, tứ giác.

Phương pháp:

Sử dụng chú ý: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

Dạng 2: Xác định tâm đối xứng của một hình. Xác định các yếu tố đối xứng nhau qua một điểm. Chứng minh các hệ thức hình học.

Phương pháp:

Ta thường sử dụng các định nghĩa và định lý sau:

+ Hai điểm  $A$, $B$ gọi là đối xứng với nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.

+ Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.


Bình chọn:
4.5 trên 70 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí