Bài 55 trang 96 SGK Toán 8 tập 1

Bình chọn:
4.6 trên 190 phiếu

Giải bài 55 trang 96 SGK Toán 8 tập 1. Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh AB và

Đề bài

Cho hình bình hành \(ABCD\), \(O\) là giao điểm của hai đường chéo. Một đường thẳng đi qua \(O\) cắt các cạnh \(AB\) và \(CD\) theo thứ tự ở \(M\) và \(N\). Chứng minh rằng điểm \(M\) đối xứng với điểm \(N\) qua \(O\).

Phương pháp giải - Xem chi tiết

Áp dụng:

+) Hình bình hành có các cạnh đối song song.

+) Hai điểm gọi là đối xứng với nhau qua điểm \(O\) nếu \(O\) là trung điểm của đoạn thẳng nối hai điểm đó.

Lời giải chi tiết

Vì \( ABCD\) là hình bình hành (giả thiết).

\( \Rightarrow AB//DC\) (tính chất hình bình hành)

\( \Rightarrow\) \(\widehat{B_{1}} = \widehat{D_{1}}\) (so le trong)

Xét \(\Delta BOM\) và \(\Delta DON\) có:

 \(\widehat{B_{1}} = \widehat{D_{1}}\) (chứng minh trên)

 \(BO = DO\) (tính chất hình bình hành)

 \(\widehat{O_{1}} = \widehat{O_{2}}\) (đối đỉnh) 

\( \Rightarrow\) \( ∆BOM = ∆DON (g.c.g)\)

\( \Rightarrow\) \(OM = ON\) (hai cạnh tương ứng).

\( \Rightarrow\) \(O\) là trung điểm của \(MN\) (dấu hiệu nhận biết trung điểm)

\( \Rightarrow\) \(M \) đối xứng với \(N\) qua \(O\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Bài 8. Đối xứng tâm

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.