Bài 41 trang 19 SGK Toán 8 tập 1

Bình chọn:
4.2 trên 231 phiếu

Giải bài 41 trang 19 SGK Toán 8 tập 1. Tìm x, biết:

Đề bài

Tìm \(x\), biết:

a) \(5x(x  -2000) - x + 2000 = 0\);

b) \({x^3} - 13x = 0\)

Phương pháp giải - Xem chi tiết

Áp dụng:

- Phương pháp phân tích đa thức thành nhân tử.

- Tính chất: Một tích bằng \(0\) khi và chỉ khi ít nhất một thừa số bằng \(0.\)

Lời giải chi tiết

\(\begin{array}{*{20}{l}}
{a)\,5x\left( {x - 2000} \right) - x + 2000 = 0}\\
{5x\left( {x - 2000} \right) - \left( {x - 2000} \right) = 0}\\
\begin{array}{l}
\left( {x - 2000} \right)\left( {5x - 1} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
x - 2000 = 0\\
5{\rm{x}} - 1 = 0
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = 2000\\
x = \dfrac{1}{5}
\end{array} \right.
\end{array}
\end{array}\)

Vậy \(x = \dfrac{1}{5}\) hoặc \(x = 2000\)

\(\begin{array}{*{20}{l}}
{b)\,{\rm{ }}{x^3}-13x = 0}\\x.x^2-13x=0\\
\begin{array}{l}
x\left( {{x^2} - {\rm{ 1}}3} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
x = 0\\
{x^2} - 13 = 0
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = 0\\
x = \pm \sqrt {13}
\end{array} \right.
\end{array}
\end{array}\)

Vậy \( x = 0\) hoặc \(x =  \pm \sqrt {13} \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.