Bài 20 trang 68 SGK Toán 8 tập 2


Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Đề bài

Cho hình thang \(ABCD\; (AB //CD)\). Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\). Đường thẳng \(a\) qua \(O\) và song song với đáy của hình thang cắt các cạnh \(AD, BC\) theo thứ tự \(E\) và \(F\) (h26)

Chứng minh rằng \(OE = OF\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Áp dụng hệ quả của định lí TaLet trong tam giác.

Lời giải chi tiết

\(∆ADC\) có \(OE // DC\) (gt) nên \(\dfrac{OE}{DC} = \dfrac{AO}{AC}\)  (1) (hệ quả của định lí TaLet trong tam giác)

\(∆BDC\) có \(OF // DC\) (gt) nên \(\dfrac{OF}{DC} = \dfrac{BF}{BC}\)   (2) (hệ quả của định lí TaLet trong tam giác)

\(∆BAC\) có \(OF // AB\) (gt) nên \(\dfrac{AO}{AC} = \dfrac{BF}{BC}\)   (3) (hệ quả của định lí TaLet trong tam giác)

Từ (1), (2), (3) suy ra \(\dfrac{OE}{DC} = \dfrac{OF}{DC}\) nên \(OE = OF\). 

Loigiaihay.com


Bình chọn:
4.3 trên 252 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.