Bài 20 trang 68 SGK Toán 8 tập 2

Bình chọn:
4 trên 156 phiếu

Giải bài 20 trang 68 SGK Toán 8 tập 2. Cho hình thang ABCD (AB //CD). Hai đường chéo AC và BD cắt nhat tại O.

Đề bài

Cho hình thang \(ABCD\; (AB //CD)\). Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\). Đường thẳng \(a\) qua \(O\) và song song với đáy của hình thang cắt các cạnh \(AD, BC\) theo thứ tự \(E\) và \(F\) (h26)

Chứng minh rằng \(OE = OF\).

Phương pháp giải - Xem chi tiết

- Áp dụng hệ quả của định lí TaLet trong tam giác.

Lời giải chi tiết

\(∆ADC\) có \(OE // DC\) (gt) nên \(\dfrac{OE}{DC} = \dfrac{AE}{AD}\)  (1) (hệ quả của định lí TaLet trong tam giác)

\(∆BDC\) có \(OF // DC\) (gt) nên \(\dfrac{OF}{DC} = \dfrac{BF}{BC}\)   (2) (hệ quả của định lí TaLet trong tam giác)

Mà \(AB // CD\) (gt) nên \(\dfrac{AE}{AD} = \dfrac{BF}{BC}\) (theo câu b bài 19)   (3)

Từ (1), (2), (3) suy ra \(\dfrac{OE}{DC} = \dfrac{OF}{DC}\) nên \(OE = OF\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com