Bài 19 trang 68 SGK Toán 8 tập 2

Bình chọn:
4.1 trên 157 phiếu

Giải bài 19 trang 68 SGK Toán 8 tập 2. Cho hình thang ABCD (AB // CD). Đường thẳng a song song với DC, cắt các cạnh AD và BC theo thứ tự là E và F. Chứng minh rằng:

Đề bài

Cho hình thang \(ABCD\) (\(AB // CD\)).

Đường thẳng \(a\) song song với \(DC\), cắt các cạnh \(AD\) và \(BC\) theo thứ tự là \(E\) và \(F.\)

Chứng minh rằng:

a) \(\dfrac{AE}{ED} = \dfrac{BF}{FC}\);

b) \(\dfrac{AE}{AD} = \dfrac{BF}{BC}\)

c) \(\dfrac{DE}{DA} = \dfrac{CF}{CB}\).

Phương pháp giải - Xem chi tiết

- Áp dụng tính chất của dãy tỉ số bằng nhau, định lí TaLet.

Lời giải chi tiết

a) Nối \(AC\) cắt \(EF\) tại \(O\)

\(∆ADC\) có \(EO // DC\) (giả thiết) \( \Rightarrow \dfrac{AE}{ED} = \dfrac{AO}{OC}\)       (1) (theo định lí Talet)

\(∆ABC\) có \(OF // AB\) (giả thiết) \( \Rightarrow \dfrac{AO}{OC} = \dfrac{BF}{FC}\)         (2) (theo định lí Talet)

Từ (1) và (2) \(\Rightarrow \dfrac{AE}{ED} = \dfrac{BF}{FC}\)

b) 

\(\eqalign{
& {{AE} \over {ED}} = {{BF} \over {FC}} \Rightarrow {{FC} \over {BF}} = {{ED} \over {AE}} \cr
& \Rightarrow {{FC} \over {BF}} + 1 = {{ED} \over {AE}} + 1 \cr
& \Rightarrow {{FC + BF} \over {BF}} = {{ED + AE} \over {AE}} \cr
& \Rightarrow {{BC} \over {BF}} = {{AD} \over {AE}} \cr
& \Rightarrow {{AE} \over {AD}} = {{BF} \over {BC}} \cr} \)

c) 

\(\eqalign{
& {{AE} \over {ED}} = {{BF} \over {FC}} \cr
& \Rightarrow {{AE} \over {ED}} + 1 = {{BF} \over {FC}} + 1 \cr
& \Rightarrow {{AE + ED} \over {ED}} = {{BF + FC} \over {FC}} \cr
& \Rightarrow {{AD} \over {ED}} = {{BC} \over {FC}} \cr
& \Rightarrow {{FC} \over {BC}} = {{ED} \over {AD}}\,\,\,hay\,\,{{DE} \over {DA}} = {{CF} \over {CB}} \cr} \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.