Bài 16 trang 67 SGK Toán 8 tập 2

Bình chọn:
3.9 trên 136 phiếu

Giải bài 16 trang 67 SGK Toán 8 tập 2. Tam giác ABC có độ dài các cạnh AB= m, AC= n và AD là đường phân giác. Chứng minh rẳng tỉ số diện tích tam giác ABD và diện tích tam giác ACD bằng

Đề bài

Tam giác ABC có độ dài các cạnh AB= m, AC= n và AD là đường phân giác. Chứng minh rẳng tỉ số diện tích tam giác ABD và diện tích tam giác ACD bằng \(\frac{m}{n}\).

Phương pháp giải - Xem chi tiết

Áp dụng: Công thức tính diện tích của tam giác, tính chất đường phân giác của tam giác.

Lời giải chi tiết

Kẻ AH ⊥ BC 

Ta có: 

SABD = \(\frac{1}{2}\)AH.BD

SADC  = \(\frac{1}{2}\)AH.DC

=>\(\frac{S_{ABD}}{S_{ADC}}\) = \(\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}\) = \(\frac{BD}{DC}\)

Mặt khác: AD là đường phân giác của ∆ABC (gt)

=> \(\frac{BD}{DC}\)= \(\frac{AB}{AC}\) = \(\frac{m}{n}\) (tính chất đường phân giác của tam giác)

Vậy \(\frac{S_{ABD}}{S_{ADC}}\) = \(\frac{m}{n}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan