Bài 16 trang 67 SGK Toán 8 tập 2

Bình chọn:
3.8 trên 169 phiếu

Giải bài 16 trang 67 SGK Toán 8 tập 2. Tam giác ABC có độ dài các cạnh AB= m, AC= n và AD là đường phân giác. Chứng minh rẳng tỉ số diện tích tam giác ABD và diện tích tam giác ACD bằng

Đề bài

Tam giác \(ABC\) có độ dài các cạnh \(AB= m, AC= n\) và \(AD\) là đường phân giác. Chứng minh rẳng tỉ số diện tích tam giác \(ABD\) và diện tích tam giác \(ACD\) bằng \(\dfrac{m}{n}\).

Phương pháp giải - Xem chi tiết

Áp dụng: Công thức tính diện tích của tam giác, tính chất đường phân giác của tam giác.

Lời giải chi tiết

Kẻ \(AH ⊥ BC\) 

Ta có: 

\({S_{ABD}} = \dfrac{1}{2}AH.BD\)

\({S_{ACD}} = \dfrac{1}{2}AH.DC\)

\( \Rightarrow \dfrac{S_{ABD}}{S_{ACD}} = \dfrac{\dfrac{1}{2}AH.BD}{\dfrac{1}{2}AH.DC} = \dfrac{BD}{DC}\)

Mặt khác: \(AD\) là đường phân giác của \(∆ABC\) (gt)

\( \Rightarrow \dfrac{BD}{DC}= \dfrac{AB}{AC} = \dfrac{m}{n}\) (tính chất đường phân giác của tam giác)

Vậy \(\dfrac{S_{ABD}}{S_{ACD}} = \dfrac{m}{n}\) (điều phải chứng minh).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.