Bài 16 trang 67 SGK Toán 8 tập 2>
Tam giác ABC có độ dài các cạnh AB= m, AC= n và AD là đường phân giác. Chứng minh rẳng tỉ số diện tích tam giác ABD và diện tích tam giác ACD bằng
Đề bài
Tam giác \(ABC\) có độ dài các cạnh \(AB= m, AC= n\) và \(AD\) là đường phân giác. Chứng minh rẳng tỉ số diện tích tam giác \(ABD\) và diện tích tam giác \(ACD\) bằng \(\dfrac{m}{n}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng: Công thức tính diện tích của tam giác, tính chất đường phân giác của tam giác.
Lời giải chi tiết
Kẻ \(AH ⊥ BC\)
Ta có:
\({S_{ABD}} = \dfrac{1}{2}AH.BD\)
\({S_{ACD}} = \dfrac{1}{2}AH.DC\)
\( \Rightarrow \dfrac{S_{ABD}}{S_{ACD}} = \dfrac{\dfrac{1}{2}AH.BD}{\dfrac{1}{2}AH.DC} = \dfrac{BD}{DC}\)
Mặt khác: \(AD\) là đường phân giác của \(∆ABC\) (gt)
\( \Rightarrow \dfrac{BD}{DC}= \dfrac{AB}{AC} = \dfrac{m}{n}\) (tính chất đường phân giác của tam giác)
Vậy \(\dfrac{S_{ABD}}{S_{ACD}} = \dfrac{m}{n}\) (điều phải chứng minh).
Loigiaihay.com
- Bài 17 trang 68 SGK Toán 8 tập 2
- Bài 18 trang 68 SGK Toán 8 tập 2
- Bài 19 trang 68 SGK Toán 8 tập 2
- Bài 20 trang 68 SGK Toán 8 tập 2
- Bài 21 trang 68 SGK Toán 8 tập 2
>> Xem thêm