Trả lời câu hỏi 3 Bài 8 trang 32 SGK Toán 9 Tập 1


Giải Trả lời câu hỏi Bài 8 trang 32 SGK Toán 9 Tập 1. Rút gọn các biểu thức sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn các biểu thức sau:

LG a

\(\displaystyle {{{x^2} - 3} \over {x + \sqrt 3 }}\)

Phương pháp giải:

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu có thể) để xuất hiện nhân tử chung và rút gọn phân thức.

+ Chú ý sử dụng hằng đẳng thức: \(a^2-b^2=(a-b)(a+b)\)

Lời giải chi tiết:

\(\eqalign{& {{{x^2} - 3} \over {x + \sqrt 3 }} = {{\left( {x + \sqrt 3 } \right)\left( {x - \sqrt 3 } \right)} \over {x + \sqrt 3 }} = x-\sqrt 3 \cr} \) 

LG b

\(\displaystyle {{1 - a\sqrt a } \over {1 - \sqrt a }}\) với \(a \ge 0;\,\,a \ne 1\)

Phương pháp giải:

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu có thể) để xuất hiện nhân tử chung và rút gọn phân thức.

+ Chú ý sử dụng hằng đẳng thức: \( a^3-b^3=(a-b)(a^2+ab+b^2)\) 

Lời giải chi tiết:

\(\eqalign{& {{1 - a\sqrt a } \over {1- \sqrt a }} = {{1 - {{\left( {\sqrt a } \right)}^3}} \over {1 - \sqrt a }} \cr & = {{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a  + a} \right)} \over {1 - \sqrt a }}  \cr &  = a + \sqrt a  + 1 \cr} \)

Loigiaihay.com


Bình chọn:
3.2 trên 14 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài