Bài 61 trang 33 SGK Toán 9 tập 1

Bình chọn:
4.6 trên 52 phiếu

Giải bài 61 trang 33 SGK Toán 9 tập 1. Chứng minh các đẳng thức sau:

Đề bài

Chứng minh các đẳng thức sau:

a) \(\dfrac{3}{2}\sqrt 6+ 2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt 6}{6}\)

b) \(\left( {x\sqrt {\dfrac{6}{x}}  + \sqrt {\dfrac{2x}{3}}  + \sqrt {6x} } \right):\sqrt {6x}=\dfrac{7}{3} \) với \(x > 0.\)

Phương pháp giải - Xem chi tiết

+ Biến đổi vế trái thánh vế phải ta sẽ có điều cần chứng minh.

+ Sử dụng các công thức sau:

\(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt a}{\sqrt b}\)

 

Lời giải chi tiết

a) Biến đổi vế trái ta có:

\( VT = \dfrac{3}{2}\sqrt 6+ 2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\)

          \(=3\dfrac{\sqrt 6}{2}+2\dfrac{\sqrt{2}}{\sqrt 3}-4\dfrac{\sqrt 3}{\sqrt 2}\)

          \(=3\dfrac{\sqrt 6}{2}+2\dfrac{\sqrt 2\sqrt 3}{\sqrt 3 .\sqrt 3}-4.\dfrac{\sqrt 3 .\sqrt 2}{\sqrt 2.\sqrt 2}\)

         \(=3\dfrac{\sqrt 6}{2}+2\dfrac{\sqrt 6}{3}-4\dfrac{\sqrt 6}{2}\)

         \(=3\dfrac{\sqrt 6 .3}{2.3}+2\dfrac{\sqrt 6 .2}{3.2}-4\dfrac{\sqrt 6 .3}{2.3}\)

         \(=9\dfrac{\sqrt 6}{6}+4\dfrac{\sqrt 6}{6}-12\dfrac{\sqrt 6}{6}\)

         \(=(9+4-12)\dfrac{\sqrt 6}{6}=\dfrac{\sqrt 6}{6}=VP\).

b) Biến đổi vế trái ta có:

\(VT = \left( {x\sqrt {\dfrac{6}{x}}  + \sqrt {\dfrac{2x}{3}}  + \sqrt {6x} } \right):\sqrt {6x} \)

         \(\eqalign{
& = \left( {x\sqrt {{{6x} \over {{x^2}}}} + \sqrt {{{2x.3} \over {{3^2}}}} + \sqrt {6x} } \right):\sqrt {6x} \cr
& = \left( {x{{\sqrt {6x} } \over {\sqrt {{x^2}} }} + {{\sqrt {6x} } \over {\sqrt {{3^2}} }} + \sqrt {6x} } \right):\sqrt {6x} \cr
& = \left( {x{{\sqrt {6x} } \over x} + {{\sqrt {6x} } \over 3} + \sqrt {6x} } \right):\sqrt {6x} \cr
& = \left( {1.\sqrt {6x} + {1 \over 3}\sqrt {6x} + \sqrt {6x} } \right):\sqrt {6x} \cr
& = \left( {1 + {1 \over 3} + 1} \right)\sqrt {6x} :\sqrt {6x} \cr
& = {7 \over 3}\sqrt {6x} :\sqrt {6x} \cr
& = {7 \over 3}\sqrt {6x} .{1 \over {\sqrt {6x} }} = \dfrac{7}{3} \cr} \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 8. Rút gọn biểu thức chứa căn bậc hai

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu