Bài 64 trang 33 SGK Toán 9 tập 1


Giải bài 64 trang 33 SGK Toán 9 tập 1. Chứng minh các đẳng thức sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh các đẳng thức sau:

LG a

\(\left ( \dfrac{1-a\sqrt{a}}{1-\sqrt{a}} +\sqrt{a}\right ). \left ( \dfrac{1-\sqrt{a}}{1-a} \right )^{2}= 1\) với \(a ≥ 0\) và \(a ≠ 1\)

Phương pháp giải:

+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.

+ \(\sqrt{A^2}=|A|\). 

+ \(|A|=A \)    nếu    \(A \ge 0\),

    \(|A|=-A\)     nếu    \(A < 0\).

+ Sử dụng các hằng đẳng thức:

         \(a^2+2ab+b^2=(a+b)^2\)

         \(a^2- b^2=(a+b).(a-b)\).

         \(a^3- b^3=(a-b)(a^2+ab+b^2)\).

Lời giải chi tiết:

Biến đổi vế trái để được vế phải.

Ta có: 

\(VT=\left ( \dfrac{1-a\sqrt{a}}{1-\sqrt{a}} +\sqrt{a}\right ). \left ( \dfrac{1-\sqrt{a}}{1-a} \right )^{2}\)

       \(=\left ( \dfrac{1-(\sqrt{a})^3}{1-\sqrt{a}} +\sqrt{a}\right ). \left ( \dfrac{1-\sqrt{a}}{(1-\sqrt a)(1+ \sqrt a)} \right )^{2}\)

       \(=\left ( \dfrac{(1-\sqrt{a})(1+\sqrt a+(\sqrt a)^2)}{1-\sqrt{a}} +\sqrt{a}\right ). \left ( \dfrac{1}{1+ \sqrt a} \right )^{2}\)

       \(=\left [ (1+\sqrt a+(\sqrt a)^2) +\sqrt{a}\right ].  \dfrac{1}{(1+ \sqrt a)^2}\)

       \(=\left [ (1+2\sqrt a+(\sqrt a)^2)\right ].  \dfrac{1}{(1+ \sqrt a)^2}\)

       \(=(1+\sqrt a)^2.  \dfrac{1}{(1+ \sqrt a)^2}=1=VP\).

LG b

\(\dfrac{a+b}{b^{2}}\sqrt{\dfrac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}}  = \left| a \right|\) với \(a + b > 0\) và \(b ≠ 0\)

Phương pháp giải:

+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.

+ \(\sqrt{A^2}=|A|\). 

+ \(|A|=A \)    nếu    \(A \ge 0\),

    \(|A|=-A\)     nếu    \(A < 0\).

+ Sử dụng các hằng đẳng thức:

         \(a^2+2ab+b^2=(a+b)^2\)

         \(a^2- b^2=(a+b).(a-b)\).

         \(a^3- b^3=(a-b)(a^2+ab+b^2)\).

Lời giải chi tiết:

Ta có:

\(VT=\dfrac{a+b}{b^{2}}\sqrt{\dfrac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}}\)

      \(=\dfrac{a+b}{b^{2}}\sqrt{\dfrac{(ab^2)^2}{(a+b)^2}}\)

     \(=\dfrac{a+b}{b^{2}}\dfrac{\sqrt{(ab^2)^2}}{\sqrt{(a+b)^2}}\)

     \(=\dfrac{a+b}{b^{2}}\dfrac{|ab^2|}{|a+b|}\)

     \(=\dfrac{a+b}{b^{2}}.\dfrac{|a|b^2}{a+b}=|a|=VP\)

Vì \(a+b > 0 \Rightarrow |a+b|=a+b\).

Loigiaihay.com


Bình chọn:
4.4 trên 80 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài