Bài 65 trang 34 SGK Toán 9 tập 1

Bình chọn:
4.7 trên 30 phiếu

Giải bài 65 trang 34 SGK Toán 9 tập 1. Rút gọn rồi so sánh giá trị của M với 1, biết:

Đề bài

Rút gọn rồi so sánh giá trị của \(M\) với \(1\), biết:

\(M={\left(\dfrac{1}{a -\sqrt a} +\dfrac{1}{\sqrt a -1}\right)} : \dfrac{\sqrt a +1}{a -2\sqrt a+1}\)   với \(a > 0\) và \( a \ne 1\). 

Phương pháp giải - Xem chi tiết

+ Sử dụng hằng đẳng thức số \(2\): \(a^2+2ab+b^2=(a+b)^2\).

+ Sử dụng phép biến đổi đặt nhân tử chung.

Lời giải chi tiết

Ta có:

\(M={\left(\dfrac{1}{a -\sqrt a} +\dfrac{1}{\sqrt a -1}\right)} : \dfrac{\sqrt a +1}{a -2\sqrt a+1}\)

      \(={\left(\dfrac{1}{\sqrt a .\sqrt a -\sqrt a .1}+\dfrac{1}{\sqrt a -1} \right)} : \dfrac{\sqrt a +1}{(\sqrt a)^2 -2\sqrt a+1}\)

      \(={\left(\dfrac{1}{\sqrt a(\sqrt a -1)}+\dfrac{1}{\sqrt a -1} \right)} : \dfrac{\sqrt a +1}{(\sqrt a -1)^2}\)

      \(={\left(\dfrac{1}{\sqrt a(\sqrt a -1)}+\dfrac{\sqrt a}{\sqrt a(\sqrt a -1)} \right)} : \dfrac{\sqrt a +1}{(\sqrt a -1)^2}\)

      \(=\dfrac{1+\sqrt a}{\sqrt a(\sqrt a -1)}  : \dfrac{\sqrt a +1}{(\sqrt a -1)^2}\)

     \(=\dfrac{1+\sqrt a}{\sqrt a(\sqrt a -1)}  . \dfrac{(\sqrt a -1)^2}{\sqrt a +1}\)

     \(=\dfrac{1}{\sqrt a}  . \dfrac{\sqrt a -1}{1}=\dfrac{\sqrt a -1}{\sqrt a}\).

     \(=\dfrac{\sqrt a}{\sqrt a}-\dfrac{1}{\sqrt a} =1 -\dfrac{1}{\sqrt a}\)

Vì \(a > 0 \Rightarrow \sqrt a > 0 \Rightarrow \dfrac{1}{\sqrt a} > 0  \Rightarrow 1 -\dfrac{1}{\sqrt a} < 1\).

Vậy \(M < 1\). 

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan