Bài 60 trang 33 SGK Toán 9 tập 1


Giải bài 60 trang 33 SGK Toán 9 tập 1. Cho biểu thức

Đề bài

Cho biểu thức \(B= \sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\) với \(x\geq -1\).

a) Rút gọn biểu thức \(B\); 

b) Tìm \(x\) sao cho \(B\) có giá trị là \(16\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Sử dụng quy tắc đặt nhân tử chung và quy tắc khai phương một tích để đưa các số hạng về dạng có cùng biểu thức dưới dấu căn.

+ \(\sqrt x =a \Leftrightarrow (\sqrt x)^2=a^2 \Leftrightarrow x=a^2\),  với \(a \ge 0.\) 

Lời giải chi tiết

a) Ta có:

\(B= \sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)

\(= \sqrt{16(x+1)}-\sqrt{9(x+1)}+\sqrt{4(x+1)}+\sqrt{x+1}\)

\(= \sqrt{4^2(x+1)}-\sqrt{3^2(x+1)}+\sqrt{2^2(x+1)}+\sqrt{x+1}\)

\(= 4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)

\(=(4-3+2+1)\sqrt{x+1}\) 

\(=4\sqrt{x+1}.\)

b) Ta có: 

\(B = 16 \Leftrightarrow 4\sqrt {x + 1}  = 16\)

\(\eqalign{
& \Leftrightarrow \sqrt {x + 1} = {{16} \over 4} \cr
& \Leftrightarrow \sqrt {x + 1} = 4 \cr
& \Leftrightarrow {\left( {\sqrt {x + 1} } \right)^2} = {4^2} \cr
& \Leftrightarrow x + 1 = 16 \cr
& \Leftrightarrow x = 16 - 1 \cr
& \Leftrightarrow x = 15(\text{thỏa mãn}\,x\ge -1) \cr} \)

Vậy với \(x=15\) thì \(B=16\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 72 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài