Bài 63 trang 33 SGK Toán 9 tập 1

Bình chọn:
4.8 trên 47 phiếu

Giải bài 63 trang 33 SGK Toán 9 tập 1. Rút gọn biểu thức sau:

Đề bài

Rút gọn biểu thức sau:

a) \(\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\) với \(a>0\) và \(b>0\);

b) \(\sqrt{\dfrac{m}{1-2x+x^{2}}}.\sqrt{\dfrac{4m-8mx+4m^{2}}{81}}\) với \(m>0\) và \(x\neq 1.\)

Phương pháp giải - Xem chi tiết

+ \( \sqrt{\dfrac{a}{b}}=\dfrac{\sqrt a}{\sqrt b}\),   với \(a \ge 0, \ b > 0\).

+ \(\dfrac{A}{\sqrt B}=\dfrac{A\sqrt B}{B}\),   với \( B > 0\).

+ \((\sqrt b)^2=b\),  với \(b \ge 0\).

Lời giải chi tiết

a) Ta có:

\(\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\)

\(=\dfrac{\sqrt{a}}{\sqrt b}+\sqrt{ab}+\dfrac{a}{b}.\dfrac{\sqrt{b}}{\sqrt a}\)

\(=\dfrac{\sqrt{a}.\sqrt b}{(\sqrt b)^2}+\sqrt{ab}+\dfrac{a}{b}.\dfrac{\sqrt{b}.\sqrt a}{(\sqrt a)^2}\)

\(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}+\dfrac{a}{b}.\dfrac{\sqrt{ab}}{a}\)

\(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}+\dfrac{\sqrt{ab}}{b}\)

\(={\left(\dfrac{\sqrt{ab}}{b}+\dfrac{\sqrt{ab}}{b} \right)}+\sqrt{ab}\)

\(=\dfrac{2\sqrt{ab}}{b}+\sqrt{ab}\)

\(=\dfrac{2\sqrt{ab}}{b}+\dfrac{b\sqrt{ab}}{b}\)

\(=\dfrac{2+b}{b}\sqrt{ab}\).

b) Ta có:

\(\sqrt{\dfrac{m}{1-2x+x^{2}}}.\sqrt{\dfrac{4m-8mx+4mx^{2}}{81}}\)

\(=\sqrt{\dfrac{m}{1-2x+x^{2}}}.\sqrt{\dfrac{4m(1-2x+x^{2})}{81}}\)

\(=\sqrt{\dfrac{m}{1-2x+x^{2}}.\dfrac{4m(1-2x+x^{2})}{81}}\)

\(=\sqrt{\dfrac{m}{1}.\dfrac{4m.1}{81}}=\sqrt{\dfrac{4m^{2}}{81}}\)

\(=\sqrt{\dfrac{(2m)^2}{9^2}}=\dfrac{|2m|}{9}=\dfrac{2m}{9}\).

Vì \(m >0\) nên \(|2m|=2m\).

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan