 Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                                                
                            Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                         Bài 8. Rút gọn biểu thức chứa căn bậc hai
                                                        Bài 8. Rút gọn biểu thức chứa căn bậc hai
                                                    Đề kiểm tra 15 phút - Đề số 3 - Bài 8 - Chương 1 - Đại số 9>
Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 8 - Chương 1 - Đại số 9
Đề bài
Bài 1. So sánh : \(\sqrt {4 + \sqrt 7 } - \sqrt {4 - \sqrt 7 } \,\,và\,\,\sqrt 3 \)
Bài 2. Rút gọn : \(A = \left( {{{\sqrt a + \sqrt b } \over {\sqrt a - \sqrt b }} - {{\sqrt a - \sqrt b } \over {\sqrt a + \sqrt b }}} \right):{{\sqrt {ab} } \over {a - b}}\)\(\,\,\,\,\left( {a > 0;\,b > 0;\,a \ne b} \right)\)
Bài 3. Tìm x, biết : \(\sqrt {{x^2} + 2x + 1} - \sqrt {{x^2} - 4x + 4} = \)\(1 - 2x\,\,\left( {*} \right)\) với \(x ≤ -1\).
LG bài 1
Phương pháp giải:
Sử dụng \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
Đặt \(x = \sqrt {4 + \sqrt 7 } - \sqrt {4 - \sqrt 7 } \)
\(\begin{array}{l}
\Rightarrow x\sqrt 2 = \sqrt {8 + 2\sqrt 7 } - \sqrt {8 - 2\sqrt 7 } \\
= \sqrt {7 + 2\sqrt 7 + 1} - \sqrt {1 - 2\sqrt 7 + 7} \\
= \sqrt {{{\left( {\sqrt 7 + 1} \right)}^2}} - \sqrt {{{\left( {1 - \sqrt 7 } \right)}^2}} \\
= \left| {1 + \sqrt 7 } \right| - \left| {1 - \sqrt 7 } \right|\\
= 1 + \sqrt 7 - \left( {\sqrt 7 - 1} \right) = 2
\end{array}\)
\( \Rightarrow x = \sqrt 2 \)
Vậy \(x < \sqrt 2 \)
LG bài 2
Phương pháp giải:
Quy đồng và rút gọn
Lời giải chi tiết:
Ta có:
\(A = \left( {{{\sqrt a + \sqrt b } \over {\sqrt a - \sqrt b }} - {{\sqrt a - \sqrt b } \over {\sqrt a + \sqrt b }}} \right):{{\sqrt {ab} } \over {a - b}}\)
\(\begin{array}{l}
= \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2} - {{\left( {\sqrt a - \sqrt b } \right)}^2}}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}:\dfrac{{\sqrt {ab} }}{{a - b}}\\
= \dfrac{{a + 2\sqrt {ab} + b - a + 2\sqrt {ab} - b}}{{a - b}}.\dfrac{{a - b}}{{\sqrt {ab} }}\\
= \dfrac{{4\sqrt {ab} }}{{a - b}}.\dfrac{{a - b}}{{\sqrt {ab} }} = 4
\end{array}\)
LG bài 3
Phương pháp giải:
Sử dụng \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
Ta có:
\(\sqrt {{x^2} + 2x + 1} - \sqrt {{x^2} - 4x + 4} \)\(=1 - 2x\)
\( \Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2}} - \sqrt {{{\left( {x - 2} \right)}^2}} = 1 - 2x\)
\(\eqalign{ & \Leftrightarrow \left| {x + 1} \right| - \left| {x - 2} \right| = 1 - 2x \cr & \Leftrightarrow - \left( {x + 1} \right) + \left( {x - 2} \right) = 1 - 2x \cr & \left( {\text{vì}\,x \le - 1 \Rightarrow x + 1 \le 0;\,x - 2 < 0} \right) \cr & \Leftrightarrow 2x = 4 \cr} \)
\(\;\;⇔ x = 2\) ( không thỏa mãn điều kiện \(x ≤ -1\))
Vậy không tìm được giá trị của x thỏa mãn yêu cầu bài toán.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Đề kiểm tra 15 phút - Đề số 4 - Bài 8 - Chương 1 - Đại số 9
- Đề kiểm tra 15 phút - Đề số 5 - Bài 8 - Chương 1 - Đại số 9
- Đề kiểm tra 15 phút - Đề số 6 - Bài 8 - Chương 1 - Đại số 9
- Đề kiểm tra 15 phút - Đề số 2 - Bài 8 - Chương 1 - Đại số 9
- Đề kiểm tra 15 phút - Đề số 1 - Bài 8 - Chương 1 - Đại số 9
>> Xem thêm
Các bài khác cùng chuyên mục
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            