Đề kiểm tra 15 phút - Đề số 4 - Bài 8 - Chương 1 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 8 - Chương 1 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Rút gọn : \(A = \left( {{{1 - a\sqrt a } \over {1 - \sqrt a }} + \sqrt a } \right).{\left( {{{1 - \sqrt a } \over {1 - a}}} \right)^2}\)\(\,\,\,\left( {a \ge 0;\,a \ne 1} \right)\) 

Bài 2. Chứng minh rằng : \(x = {{\left( {5\sqrt 3  + \sqrt {50} } \right)\left( {5 - \sqrt {24} } \right)} \over {\sqrt {75}  - 5\sqrt 2 }}\) có giá trị là số nguyên.

Bài 3. Tìm x, biết : \(\left( {\sqrt x  + {1 \over {\sqrt x  + 1}}} \right).\left( {1 - {{\sqrt x  + 2} \over {x + \sqrt x  + 1}}} \right) > 0\,\left( * \right)\) 

LG bài 1

Phương pháp giải:

Quy đồng và rút gọn, sử dụng \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

Lời giải chi tiết:

Ta có:

\(A = \left( {{{1 - a\sqrt a } \over {1 - \sqrt a }} + \sqrt a } \right).{\left( {{{1 - \sqrt a } \over {1 - a}}} \right)^2}\)

\(\eqalign{  &  = \left( {{{{1^3} - {{\left( {\sqrt a } \right)}^3}} \over {1 - \sqrt a }} + \sqrt a } \right).{\left( {{{1 - \sqrt a } \over {1 - a}}} \right)^2}  \cr  &  = \left( {{{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a  + a} \right)} \over {1 - \sqrt a }} + \sqrt a } \right).{\left( {{{1 - \sqrt a } \over {1 - a}}} \right)^2}  \cr  &  = \left( {1 + 2\sqrt a  + a} \right).{{{{\left( {1 - \sqrt a } \right)}^2}} \over {{{\left( {1 - \sqrt a } \right)}^2}{{\left( {1 + \sqrt a } \right)}^2}}} \cr} \) 

\(\begin{array}{l}
= {\left( {1 + \sqrt a } \right)^2}.\frac{{{{\left( {1 - \sqrt a } \right)}^2}}}{{{{\left( {1 - \sqrt a } \right)}^2}{{\left( {1 + \sqrt a } \right)}^2}}}\\
= 1
\end{array}\)

LG bài 2

Phương pháp giải:

Sử dụng \(\frac{m}{{\sqrt A  \pm \sqrt B }} = \frac{{m\left( {\sqrt A  \mp \sqrt B } \right)}}{{A - B}}\left( {A,B \ge 0;A \ne B} \right)\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\frac{{5\sqrt 3 + \sqrt {50} }}{{\sqrt {75} - 5\sqrt 2 }} = \frac{{5\sqrt 3 + \sqrt {{5^2}.2} }}{{\sqrt {{5^2}.3} - 5\sqrt 2 }}\\
= \frac{{5\sqrt 3 + 5\sqrt 2 }}{{5\sqrt 3 - 5\sqrt 2 }} = \frac{{5\left( {\sqrt 3 + \sqrt 2 } \right)}}{{5\left( {\sqrt 3 - \sqrt 2 } \right)}}\\
= \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} = \frac{{{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}\\
= \frac{{3 + 2\sqrt 6 + 2}}{1} = 5 + 2\sqrt 6 
\end{array}\)

Vậy \(x = \left( {5 + 2\sqrt 6 } \right)\left( {5 - \sqrt {24} } \right) \)\(\,= \left( {5 + \sqrt {24} } \right)\left( {5 - \sqrt {24} } \right) \)\(\,= 25 - 24 = 1\)

Vậy \(x = 1\) là số nguyên.

LG bài 3

Phương pháp giải:

Quy đồng và rút gọn vế trái.

Lời giải chi tiết:

Điều kiện: \(x ≥ 0\).

Ta có: 

\(\left( {\sqrt x  + {1 \over {\sqrt x  + 1}}} \right).\left( {1 - {{\sqrt x  + 2} \over {x + \sqrt x  + 1}}} \right) > 0\)

\(\eqalign{  & \Leftrightarrow {{\sqrt x \left( {\sqrt x  + 1} \right) + 1} \over {\sqrt x  + 1}}.{{x + \sqrt x  + 1 - \sqrt x  - 2} \over {x + \sqrt x  + 1}} > 0  \cr  &  \Leftrightarrow {{x + \sqrt x  + 1} \over {\sqrt x  + 1}}.{{x - 1} \over {x + \sqrt x  + 1}} > 0  \cr  &  \Leftrightarrow {{(\sqrt x  + 1)(\sqrt x  - 1)} \over {\sqrt x  + 1}}>0\cr  &  \Leftrightarrow \sqrt x  - 1 > 0  \cr  &  \Leftrightarrow \sqrt x  > 1 \cr} \)

\(\;\;⇔ x > 1\) (thỏa mãn điều kiện \(x ≥ 0\))

Vậy \(x > 1\). 

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài