Trả lời câu hỏi 3 Bài 2 trang 37 SGK Toán 8 Tập 1


Đề bài

Cho phân thức \(\dfrac{{3{x^2}y}}{{6x{y^3}}}\). Hãy chia tử và mẫu của phân thức này cho \(3xy\) rồi so sánh phân thức vừa nhận được với phân thức đã cho.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc nhân chia đơn thức với đơn thức, định nghĩa hai phân thức bằng nhau.

Lời giải chi tiết

Ta có:

\(3x^2y : 3xy = x\)

\(6xy^3 : 3xy = 2y^2\)

Suy ra, chia cả tử và mẫu của phân thức \(\dfrac{{3{x^2}y}}{{6x{y^3}}}\) cho \(3xy\) ta được phân thức \(\dfrac{x}{{2{y^2}}}\)

So sánh hai phân thức: \(\dfrac{{3{x^2}y}}{{6x{y^3}}}\) và \( \dfrac{x}{{2{y^2}}}\)

Xét tích chéo:

\(3x^2y . 2y^2 = 6x^2y^3\)

\(6xy^3.x = 6x^2y^3\)

Suy ra: \(3x^2y . 2y^2 =6xy^3.x\)

Do đó: \(\dfrac{{3{x^2}y}}{{6x{y^3}}} = \dfrac{x}{{2{y^2}}}\)

Loigiaihay.com


Bình chọn:
4.7 trên 39 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.