Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 2 - Đại số 8


Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 2 - Đại số 8

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Giả sử tất cả các phân thức trong đề bài đều có nghĩa.

Bài 1. Tìm đa thức P, biết : \({P \over {x - y}} = {{2{x^2} - 2xy} \over {2{{\left( {y - x} \right)}^2}}}.\)  

Bài 2. Đưa các phân thức sau về cùng mẫu thức :

a) \({{2x} \over {x - 2}}\) và \({{3x + 2} \over {2 - x}}\)

b) \({x \over {x - 2}}\) và \({1 \over {x + 2}}.\)  

Bài 3. Đưa các phân thức sau về cùng tử thức : \({{x + y} \over x}\) và \({{{x^2} - {y^2}} \over {{x^2} + xy}}.\)  

LG bài 1

Phương pháp giải:

Áp dụng: \(\frac{a}{b} = \frac{c}{d} \Leftrightarrow a.d = b.c\) 

Rút P(x) theo x rồi rút gọn

Lời giải chi tiết:

Ta có : \({P \over {x - y}} = {{2x\left( {x - y} \right)} \over {2{{\left( {y - x} \right)}^2}}}\) .               Vậy \(P = x.\)

LG bài 2

Phương pháp giải:

Quy đồng mẫu thức hai phân thức

Lời giải chi tiết:

a) Ta có : \({{3x + 2} \over {2 - x}} = {{ - 3x - 2} \over {x - 2}}.\)  

Vậy \({{ - 3x - 2} \over {x - 2}}\) và \({{2x} \over {x - 2}}\) là hai phân thức có cùng mẫu thức.

b) Ta có : \({x \over {x - 2}} = {{x\left( {x + 2} \right)} \over {\left( {x - 2} \right)\left( {x + 2} \right)}} = {{{x^2} + 2x} \over {{x^2} - 4}};\)

\({1 \over {x + 2}} = {{x - 2} \over {\left( {x + 2} \right)\left( {x - 2} \right)}} = {{x - 2} \over {{x^2} - 4}}.\)  

Vậy \({{{x^2} + 2x} \over {{x^2} - 4}}\) và \({{x - 2} \over {{x^2} - 4}}\) là hai phân thức có cùng mẫu thức.

LG bài 3

Phương pháp giải:

Quy đồng tử thức hai phân thức

Lời giải chi tiết:

Ta có \({{x + y} \over x} = {{\left( {x + y} \right)\left( {x - y} \right)} \over {x\left( {x - y} \right)}} = {{{x^2} - {y^2}} \over {{x^2} - xy}}.\)  

Vậy \({{{x^2} - {y^2}} \over {{x^2} - xy}}\) và \({{{x^2} - {y^2}} \over {{x^2} + xy}}\) là hai phân thức có cùng tử thức.

Loigiaihay.com

 


Bình chọn:
4.2 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài