Bài 7 trang 103 SBT toán 9 tập 1


Giải bài 7 trang 103 sách bài tập toán 9. Đường cao của một tam giác vuông chia cạnh huyền thành hai đường thẳng có độ dài là 3 và 4. Hãy tính các cạnh góc vuông của tam giác này.

Đề bài

Đường cao của một tam giác vuông chia cạnh huyền thành hai đường thẳng có độ dài là 3 và 4. Hãy tính các cạnh góc vuông của tam giác này. 

Phương pháp giải - Xem chi tiết

 

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:

+) \(A{B^2} = BH.BC\) hay \({c^2} = a.c'\)

+)\(A{C^2} = CH.BC\) hay \({b^2} = ab'\)

+) \(AB^2+AC^2=BC^2\) hay \(c^2+b^2=a^2\) (định lý Pytago)

Lời giải chi tiết

Giả sử tam giác ABC có: \(\widehat {BAC} = {90^0},\)\(AH \bot BC,BH = 3,CH = 4\)

Ta có \(BC=BH+CH=3+4=7\)

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có: 

\(\eqalign{
& A{B^2} = BH.BC \cr 
& = 3.7 = 21 \cr 
& \Rightarrow AB = \sqrt {21}; \cr} \)

\(\eqalign{
& A{C^2} = CH.BC \cr 
& = 4.7 = 28 \cr 
& \Rightarrow AC = \sqrt {28} = 2\sqrt 7. \cr} \) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 13 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài