Bài 1.3 phần bài tập bổ sung trang 105 SBT toán 9 tập 1


Giải bài 1.3 phần bài tập bổ sung trang 105 sách bài tập toán 9. Tính h, b, c nếu biết b' = 36;...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Trong các bài (1.3, 1.4, 1.5) ta sẽ sử dụng các kí hiệu sau đây đối với tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH :\) \(AB = c, AC = b, BC = a,\)\( AH = h, BH = c', CH = b'.\)

a)  Tính \(h, b, c\) nếu biết \(b' = 36, c' = 64\).

b)  Tính \(h, b, b', c'\) nếu biết \(a = 9, c = 6\).  

Phương pháp giải - Xem chi tiết

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:

+) \(A{B^2} = BH.BC\) hay \({c^2} = a.c'\)  

+) \(A{C^2} = CH.BC\) hay \({b^2} = ab'\)

+) \(AH^2=HB.HC;AB.AC=AH.BC\) hay \(h^2=b'.c';a.h=b.c\)

+) \(A{H^2} = BH.CH\) hay \({h^2} = b'.c'\)

Lời giải chi tiết

 

a) Áp dụng các hệ thức lượng trong tam giác vuông ta có: 

Ta có  

\(\begin{array}{l}
{h^2} = b'.c' = 36.64 = 2304\\
\Rightarrow h = 48
\end{array}\)

\(\begin{array}{l}
{b^2} =b'.a= b'(b' + c') \\= 36.(36 + 64) = 3600\\
\Rightarrow b = 60
\end{array}\) 

\(\begin{array}{l}
{c^2}=c'.a = c'(b' + c') \\= 64.(36 + 64) = 6400\\
\Rightarrow c = 80
\end{array}\)

b) Áp dụng các hệ thức lượng trong tam giác vuông ta có: 

+ \(c^2=c'.a\)

\(\Rightarrow c' = \dfrac{{{c^2}}}{a} = \dfrac{{{6^2}}}{9} = 4\),

+ \(b' = a - c' = 9 - 4 = 5\),

+ \({b^2} = a.b' = 9 . 5 = 45\) nên \(b = 3\sqrt 5\);

+ \({h^2} = b'.c' = 5.4=20\) nên \(h = 2\sqrt 5 \).

Loigiaihay.com


Bình chọn:
4.1 trên 14 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí