Bài 11 trang 104 SBT toán 9 tập 1


Giải bài 11 trang 104 sách bài tập toán 9. Cho tam giác ABC vuông tại A. Biết AB/AC=5/6; đường cao AH = 30. Tính HB,HC.

Đề bài

Cho tam giác ABC vuông tại A. Biết rằng \(\dfrac{{AB} }{{AC}} = \dfrac{5}{6}\), đường cao \(AH = 30cm\). Tính \(HB, HC\).

Phương pháp giải - Xem chi tiết

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\).

Khi đó ta có các hệ thức sau: 

+) \(A{B^2} = BH.BC\) 

+) \(A{C^2} = CH.BC\) 

+) \(AH^2=HB.HC;AB.AC=AH.BC\)

+) \(AB^2+AC^2=BC^2\) (định lý Pytago).

Lời giải chi tiết

Xét hai tam giác vuông \(AHB\) và \(CHA,\) ta có:

\(\widehat {AHB} = \widehat {CHA} = {90^0}\) 

\(\widehat {ABH} = \widehat {CAH}\) (hai góc cùng phụ \(\widehat {ACB}\)) 

Vậy \( ∆AHB \backsim ∆CHA\) (g.g)

Suy ra: \(\dfrac{{AH}}{{HC}} = \dfrac{{AB}}{{CA}}.\)  (1)

Theo đề bài: \(\dfrac{{AB}}{{AC}} = \dfrac{5}{6}\) và \(AH = 30(cm)\)  (2)

Từ (1) và (2) suy ra: \(\dfrac{{30}}{{HC}} = \dfrac{5 }{6} \Rightarrow HC = \dfrac{{30.6}}{5} = 36(cm)\)

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

\(A{H^2} = HB.HC \)\(\Rightarrow HB = \dfrac{{A{H^2}}}{{HC}} = \dfrac{{{{30}^2}}}{{36}} = 25(cm)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.6 trên 16 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài