Bài 1.5 phần bài tập bổ sung trang 105 SBT toán 9 tập 1


Giải bài 1.5 phần bài tập bổ sung trang 105 sách bài tập toán 9. Chứng minh rằng: h = bc/a....

Đề bài

Trong các bài (1.3, 1.4, 1.5) ta sẽ sử dụng các kí hiệu sau đây đối với tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH :\) \(AB = c, AC = b, BC = a,\)\( AH = h, BH = c', CH = b'.\)

Chứng minh rằng:

a) \(h = \dfrac{{bc}}{a}\); 

b) \(\dfrac{{{b^2}}}{{{c^2}}} = \dfrac{{b'}}{{c'}}.\) 

Phương pháp giải - Xem chi tiết

Để chứng minh các công thức:

- Sử dụng công thức tính diện tích tam giác \(S = \dfrac{1}{2}ah = \dfrac{1}{2}bc.\) 

- Sử dụng hệ thức lượng trong tam giác vuông:

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:

+) \(A{B^2} = BH.BC\)  

+) \(A{C^2} = CH.BC\)

- Hoặc sử dụng tam giác đồng dạng.

Lời giải chi tiết

a) Cách 1: Dùng công thức tính diện tích tam giác vuông \(ABC\):  

\(S = \dfrac{1}{2}ah = \dfrac{1}{2}bc\) suy ra \(h = \dfrac{{bc}}{ a}.\)

Cách 2: Dùng tam giác đồng dạng.

Ta có \(∆ABC \backsim ∆HBA\,(g-g)\) (do có góc B chung và \(\widehat{BAC}=\widehat {AHB}=90^0) \) suy ra \(\dfrac{{AC}}{{HA}} = \dfrac{{BC}}{ {BA}}\) tức là \(\dfrac{b}{ h} = \dfrac{a}{c}\), hay \(h = \dfrac{{bc}}{a}.\)

b)  Theo hệ thức lượng trong tam giác vuông ta có:  \({b^2} = ab',{c^2} = ac'\) suy ra \(\dfrac{{{b^2}}}{{{c^2}}} = \dfrac{{ab'}}{{ac'}}= \dfrac{{b'}}{{c'}}.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 10 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài