Bài 1.5 phần bài tập bổ sung trang 105 SBT toán 9 tập 1


Giải bài 1.5 phần bài tập bổ sung trang 105 sách bài tập toán 9. Chứng minh rằng: h = bc/a....

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Trong các bài (1.3, 1.4, 1.5) ta sẽ sử dụng các kí hiệu sau đây đối với tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH :\) \(AB = c, AC = b, BC = a,\)\( AH = h, BH = c', CH = b'.\)

Chứng minh rằng:

a) \(h = \dfrac{{bc}}{a}\); 

b) \(\dfrac{{{b^2}}}{{{c^2}}} = \dfrac{{b'}}{{c'}}.\) 

Phương pháp giải - Xem chi tiết

Để chứng minh các công thức:

- Sử dụng công thức tính diện tích tam giác \(S = \dfrac{1}{2}ah = \dfrac{1}{2}bc.\) 

- Sử dụng hệ thức lượng trong tam giác vuông:

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:

+) \(A{B^2} = BH.BC\)  

+) \(A{C^2} = CH.BC\)

- Hoặc sử dụng tam giác đồng dạng.

Lời giải chi tiết

a) Cách 1: Dùng công thức tính diện tích tam giác vuông \(ABC\):  

\(S = \dfrac{1}{2}ah = \dfrac{1}{2}bc\) suy ra \(h = \dfrac{{bc}}{ a}.\)

Cách 2: Dùng tam giác đồng dạng.

Ta có \(∆ABC \backsim ∆HBA\,(g-g)\) (do có góc B chung và \(\widehat{BAC}=\widehat {AHB}=90^0) \) suy ra \(\dfrac{{AC}}{{HA}} = \dfrac{{BC}}{ {BA}}\) tức là \(\dfrac{b}{ h} = \dfrac{a}{c}\), hay \(h = \dfrac{{bc}}{a}.\)

b)  Theo hệ thức lượng trong tam giác vuông ta có:  \({b^2} = ab',{c^2} = ac'\) suy ra \(\dfrac{{{b^2}}}{{{c^2}}} = \dfrac{{ab'}}{{ac'}}= \dfrac{{b'}}{{c'}}.\)

Loigiaihay.com


Bình chọn:
3.8 trên 12 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí