Bài 1.5 phần bài tập bổ sung trang 105 SBT toán 9 tập 1


Đề bài

Trong các bài (1.3, 1.4, 1.5) ta sẽ sử dụng các kí hiệu sau đây đối với tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH :\) \(AB = c, AC = b, BC = a,\)\( AH = h, BH = c', CH = b'.\)

Chứng minh rằng:

a) \(h = \dfrac{{bc}}{a}\); 

b) \(\dfrac{{{b^2}}}{{{c^2}}} = \dfrac{{b'}}{{c'}}.\) 

Phương pháp giải - Xem chi tiết

Để chứng minh các công thức:

- Sử dụng công thức tính diện tích tam giác \(S = \dfrac{1}{2}ah = \dfrac{1}{2}bc.\) 

- Sử dụng hệ thức lượng trong tam giác vuông:

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:

+) \(A{B^2} = BH.BC\)  

+) \(A{C^2} = CH.BC\)

- Hoặc sử dụng tam giác đồng dạng.

Lời giải chi tiết

a) Cách 1: Dùng công thức tính diện tích tam giác vuông \(ABC\):  

\(S = \dfrac{1}{2}ah = \dfrac{1}{2}bc\) suy ra \(h = \dfrac{{bc}}{ a}.\)

Cách 2: Dùng tam giác đồng dạng.

Ta có \(∆ABC \backsim ∆HBA\,(g-g)\) (do có góc B chung và \(\widehat{BAC}=\widehat {AHB}=90^0) \) suy ra \(\dfrac{{AC}}{{HA}} = \dfrac{{BC}}{ {BA}}\) tức là \(\dfrac{b}{ h} = \dfrac{a}{c}\), hay \(h = \dfrac{{bc}}{a}.\)

b)  Theo hệ thức lượng trong tam giác vuông ta có:  \({b^2} = ab',{c^2} = ac'\) suy ra \(\dfrac{{{b^2}}}{{{c^2}}} = \dfrac{{ab'}}{{ac'}}= \dfrac{{b'}}{{c'}}.\)

Loigiaihay.com


Bình chọn:
3.8 trên 12 phiếu

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.