Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 2 - Đại số 8


Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 2 - Đại số 8

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Giả sử tất cả các phân thức trong đề bài đều có nghĩa.

Bài 1. Tìm m, biết : \({{\left( {{x^3} + 8} \right):m} \over {\left( {{x^2} - 4} \right):m}} = {{{x^2} - 2x + 4} \over {x - 2}}.\)  

Bài 2. Tìm P, biết : \({{{x^2} + 2x + 1} \over {2{x^2} - 2}} = {{x + 1} \over P}.\)  

Bài 3. Đưa các phân thức sau về cùng tử thức : \({{{x^3} - 1} \over {{x^2} + 1}}\) và \({{x - 1} \over {x + 1}}.\)  

Bài 4. Đưa các phân thức sau về cùng mẫu thức : \({1 \over {{a^2} - 4}};{1 \over {{a^3} - 8}};{1 \over {a + 2}}.\)  

LG bài 1

Phương pháp giải:

Rút gọn vế trái rồi suy ra m

Lời giải chi tiết:

Ta có :

\({{\left( {{x^3} + 8} \right):m} \over {\left( {{x^2} - 4} \right):m}} = {{\left[ {\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)} \right]:m} \over {\left( {x + 2} \right)\left( {x - 2} \right):m}} \)\(\;= {{{x^2} - 2x + 4} \over {x - 2}}\)

Suy ra VT=VP với mọi m khác 0

Vậy m khác 0

LG bài 2

Phương pháp giải:

Rút gọn vế trái rồi suy ra P

Lời giải chi tiết:

Ta có : \({{{x^2} + 2x + 1} \over {2{x^2} - 2}} = {{{{\left( {x + 1} \right)}^2}} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}} = {{x + 1} \over {2\left( {x - 1} \right)}}.\)  

Vậy \(P = 2\left( {x - 1} \right) = 2x - 2.\)  

LG bài 3

Phương pháp giải:

Quy đồng tử thức hai phân thức

Lời giải chi tiết:

Ta có : \({{x - 1} \over {x + 1}} = {{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}} = {{{x^3} - 1} \over {\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}.\)  

Vậy \({{{x^3} - 1} \over {{x^2} + 1}}\) và \({{{x^3} - 1} \over {\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}\) là hai phân thức có cùng tử thức.

LG bài 4

Phương pháp giải:

Phân tích các mẫu thành nhân tử rồi quy đồng mẫu thức 3 phân thức

Lời giải chi tiết:

Ta có :

\({1 \over {{a^2} - 4}} = {1 \over {\left( {a - 2} \right)\left( {a + 2} \right)}} = {{{a^2} + 2a + 4} \over {\left( {a - 2} \right)\left( {a + 2} \right)\left( {{a^2} + 2a + 4} \right)}} \)\(\;= {{{a^2} + 2a + 4} \over {\left( {a + 2} \right)\left( {{a^3} - 8} \right)}};\)

\({1 \over {{a^3} - 8}} = {{a + 2} \over {\left( {a + 2} \right)\left( {{a^3} - 8} \right)}}\)

\({1 \over {a + 2}} = {{{a^3} - 8} \over {\left( {a + 2} \right)\left( {{a^3} - 8} \right)}}.\)  

 Loigiaihay.com


Bình chọn:
2.7 trên 3 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí