 Giải toán 8, giải bài tập toán lớp 8 sgk đầy đủ đại số và hình học
                                                
                            Giải toán 8, giải bài tập toán lớp 8 sgk đầy đủ đại số và hình học
                         Bài 2. Tính chất cơ bản của phân thức
                                                        Bài 2. Tính chất cơ bản của phân thức
                                                    Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 2 - Đại số 8>
Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 2 - Đại số 8
Đề bài
Giả sử tất cả các phân thức trong đề bài đều có nghĩa.
Bài 1. Tìm m, biết : \({{\left( {x - 2} \right)m} \over {ym}} = {{{x^2} - 4} \over {\left( {x + 2} \right)y}}.\)
Bài 2. Chứng minh hai phân thức sau bằng nhau : \({{{x^2}\left( {x - 1} \right)} \over {x{{\left( {1 - x} \right)}^2}}} = {x \over {x - 1}}.\)
Bài 3. Đưa các phân thức sau về cùng mẫu thức :
a) \({{3x + 2} \over {{x^2} - 2x + 1}}\) và \({1 \over {{x^2} - 1}}\)
b) \({{x + 1} \over {x - 1}}\) và \({{3x} \over {1 - {x^2}}}.\)
LG bài 1
Áp dụng: \(\frac{a}{b} = \frac{c}{d} \Leftrightarrow a.d = b.c\)
Rút gọn rồi rút m theo x
Lời giải chi tiết:
Ta có : \({{\left( {x - 2} \right)m} \over {ym}} = {{\left( {x - 2} \right)\left( {x + 2} \right)} \over {y\left( {x + 2} \right)}}\)
Vậy \(m = x + 2.\)
LG bài 2
Phương pháp giải:
Rút gọn phân thức bên trái rồi chứng minh VT=VP
Lời giải chi tiết:
Ta có : \({{{x^2}\left( {x - 1} \right)} \over {x{{\left( {1 - x} \right)}^2}}} = {{{x^2}\left( {x - 1} \right)} \over {x{{\left( {x - 1} \right)}^2}}} = {x \over {x - 1}}\)(đpcm).
LG bài 3
Phương pháp giải:
Quy đồng mẫu thức các phân thức
Lời giải chi tiết:
Bài 3.
a) Ta có :\({{3x + 2} \over {{{\left( {x - 1} \right)}^2}}} = {{\left( {3x + 2} \right)\left( {x + 1} \right)} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}};\)
\({1 \over {{x^2} - 1}} = {1 \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = {{x - 1} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}.\)
b) Ta có : \({{x + 1} \over {x - 1}} = {{ - \left( {x + 1} \right)} \over { - \left( {x - 1} \right)}} = {{ - \left( {x + 1} \right)} \over {1 - x}} = {{ - \left( {x + 1} \right)\left( {1 + x} \right)} \over {\left( {1 - x} \right)\left( {1 + x} \right)}} \)\(\;= {{ - {{\left( {x + 1} \right)}^2}} \over {1 - {x^2}}}\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            