Bài 8 trang 40 SGK Toán 8 tập 2


Cho a < b, chứng tỏ:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(a < b\), chứng tỏ:

LG a.

\(2a - 3 < 2b - 3\);

Phương pháp giải:

Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm, liên hệ giữa thứ tự và phép cộng, tính chất bắc cầu.

Lời giải chi tiết:

Bài ra đã cho \(a < b\).

Nhân hai vế của bất đẳng thức \(a<b\) với \(2\), ta có \(2a < 2b\).

Cộng số \((-3)\) vào hai vế bất đẳng thức \(2a < 2b\), ta có \(2a - 3 < 2b - 3\).

LG b.

\(2a - 3 < 2b + 5\).

Phương pháp giải:

Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm, liên hệ giữa thứ tự và phép cộng, tính chất bắc cầu.

Lời giải chi tiết:

So sánh hai số \(-3\) và \(5\), ta có \(-3<5\).

Cộng số \(2b\) vào hai vế của \(-3 < 5\) ta có \(2b - 3 < 2b + 5\)

Mặt khác, theo kết quả câu a) ta có \(2a - 3 < 2b - 3\)

Vậy, theo tính chất bắc cầu với số \(2a-3\), số \(2b-3\) và số \(2b+5\), ta có \(2a - 3 < 2b + 5\).

Loigiaihay.com


Bình chọn:
4.1 trên 167 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.