Bài 47 trang 84 SGK Toán 8 tập 2


Giải bài 47 trang 84 SGK Toán 8 tập 2. Tam giác ABC có độ dài các cạnh là 3cm, 4cm, 5cm. Tam giác A'B'C' đồng dạng với tam giác ABC và có diện tích là 54

Đề bài

Tam giác ABC có độ dài các cạnh là \(3cm, 4cm, 5cm\). Tam giác A'B'C' đồng dạng với tam giác ABC và có diện tích là \(54c{m^2}\)

Tính độ dài cách cạnh của tam giác \(A'B'C'\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Áp dụng tính chất của hai tam giác đồng dạng, công thức tính diện tích tam giác.

Lời giải chi tiết

Xét \(∆ABC\) có \(AB=3cm,AC=4cm,BC=5cm\).

Ta có:

\({3^2} + {4^2} = 25 = {5^2} \Rightarrow \Delta ABC\) vuông tại \(A\) (định lí Pitago đảo)

Nên \({S_{ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.3.4 = 6c{m^2}\) 

Vì \(∆ABC ∽ ∆A'B'C'\) (gt)

\(\dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{AC}}{{A'C'}}\) (tính chất hai tam giác đồng dạng)

\(  \Rightarrow \dfrac{S_{ABC}}{S_{A'B'C'}} = {\left( {\dfrac{{AB}}{{A'B'}}} \right)^2}\) (tỉ số diện tích bằng bình phương tỉ số đồng dạng)

Do đó: \( \dfrac{6}{54} =  {\left( {\dfrac{{AB}}{{A'B'}}} \right)^2}\)

\(\eqalign{
& \Rightarrow {\left( {{{AB} \over {A'B'}}} \right)^2} = {1 \over 9} \cr
& \Rightarrow {{AB} \over {A'B'}} = {1 \over 3} \cr
& \Rightarrow A'B' = 3AB = 3.3 = 9cm \cr} \)

Tức là độ dài mỗi cạnh của tam giác \(A'B'C'\) gấp \(3\) lần độ dài mỗi cạnh của cạnh của tam giác \(ABC\).

Vậy ba cạnh của tam giác \(A'B'C'\) là \(A'B'=9cm,A'C'= 12cm, \)\(\,B'C'=15cm\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 245 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài