Bài 38 trang 82 SGK Toán 9 tập 2

Bình chọn:
4.1 trên 92 phiếu

Giải bài 38 trang 82 SGK Toán 9 tập 2. Trên một đường tròn, lấy liên tiếp ba cung AC, CD, DB

Đề bài

Trên một đường tròn, lấy liên tiếp ba cung \(AC, CD, DB\) sao cho

\(sđ\overparen{AC}=sđ\overparen{CD}=sđ\overparen{DB}=60^0\). Hai đường thẳng \(AC\) và \(BD\) cắt nhau tại \(E\). Hai tiếp tuyến của đường tròn tại \(B\) và \(C\) cắt nhau tại \(T\). Chứng minh rằng:

a) \(\widehat {AEB}=\widehat {BTC}\);

b) \(CD\) là phân giác của \(\widehat{BCT}.\)

Phương pháp giải - Xem chi tiết

+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.

+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

Lời giải chi tiết

 

a) Ta có \(\widehat{AEB}\) là góc có đỉnh ở bên ngoài đường tròn chắn cung \(CD\) và \(AB\) nên:

\(\widehat{AEB}=\frac{sđ\overparen{AB}- sđ\overparen{CD}}{2}={{({{180}^0} + {{60}^0}) - ({{60}^0} + {{60}^0})} \over 2} = {60^0}.\)

và \(\widehat{BTC}\)  cũng là góc có đỉnh ở bên ngoài đường tròn chắn cung \(BC\) lớn và \(BC\) nhỏ (hai cạnh đều là tiếp tuyến của đường tròn) nên:

\(\widehat{BTC}=\frac{\widehat {BAC}-\widehat {BDC}}{2}={{({{180}^0} + {{60}^0}) - ({{60}^0} + {{60}^0})} \over 2} = {60^0}.\)

 Vậy \(\widehat {AEB} =\widehat {BTC}=60^0.\) 

b)  \(\widehat {DCT} \) là góc tạo bởi tiếp tuyến và dây cung chắn cung \(CD\) nên:

     \(\widehat {DCT}=\frac{sđ\overparen{CD}}{2}=\frac{60^0}{2}=30^0.\)

\(\widehat {DCB}\) là góc nội tiếp chắn cung \(BD\) nên: \(\widehat {DCB}=\frac{sđ\overparen{DB}}{2}={{{{60}^0}} \over 2} = {30^0}.\)

Vậy  \(\widehat {DCT}=\widehat {DCB}=30^0\)  hay  \(CD\) là phân giác của \(\widehat {BCT}. \)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan