Bài 36 trang 82 SGK Toán 9 tập 2

Bình chọn:
4.1 trên 74 phiếu

Giải bài 36 trang 82 SGK Toán 9 tập 2. Cho đường tròn (O) và hai dây AB, AC

Đề bài

Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\). Gọi \(M, N\) lần lượt là điểm chính giữa của cung \(AB\) và cung \(AC\). Đường thẳng \(MN\) cắt dây \(AB\) tại \(E\) và cắt dây \(AC\) tại \(H\). Chứng minh rằng tam giác \(AEH\) là tam giác cân.

Phương pháp giải - Xem chi tiết

+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

Lời giải chi tiết

                                

Ta có: \(\widehat {AHM}\)= \(\frac{sđ\overparen{AM}+sđ\overparen{NC}}{2}\)     (1)

           \(\widehat {AEN}\)= \(\frac{sđ\overparen{MB}+sđ\overparen{AN}}{2}\)           (2)

(Vì  \(\widehat {AHM}\) và  \(\widehat {AEN}\) là các góc có đỉnh cố định ở bên trong đường tròn chắn các cung \(AM, \, \, NC\) và \(AN, \, \, MB\)).

Theo gỉả thiết thì:

\(\overparen{AM}=\overparen{MB}   (3)\) (\(M\) là điểm chính giữa cung \(AB\)).

\(\overparen{NC}=\overparen{AN}    (4)\)  \(N\) là điểm chính giữa cung \(AC\)).

Từ (1),(2), (3), (4), suy ra \(\widehat {AHM}= \widehat {AEN}\) do đó \(∆AEH\) là tam giác cân. (định nghĩa tam giác cân).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan