Bài 37 trang 82 SGK Toán 9 tập 2

Bình chọn:
4 trên 87 phiếu

Giải bài 37 trang 82 SGK Toán 9 tập 2. Cho đường tròn (O)

Đề bài

Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\) bằng nhau. Trên cung nhỏ \(AC\) lấy một điểm \(M\). Gọi \(S\) là giao điểm của \(AM\) và \(BC\). Chứng minh: \(\widehat {ASC} = \widehat {MCA}.\)

Phương pháp giải - Xem chi tiết

+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.

Lời giải chi tiết

                            

Ta có: \(\widehat{ASC}\) là góc có đỉnh ở ngoài đường tròn chắn cung \(MC\) và \(AB.\)

\(\Rightarrow \widehat{ASC} = \frac{sđ \overparen{AB}- sđ \overparen{MC}}{2}\) (1)

và \(\widehat {MCA}\) = \(\frac{sđ\overparen{AM}}{2}\)   (2) (góc nội tiếp chắn cung \(\overparen{AM}\))

Theo giả thiết thì: \(AB = AC => \overparen{AB}=\overparen{AC}\)  (hai dây bằng nhau căng hai cung bằng nhau).  

 \(\Rightarrow \overparen{AB}-\overparen{MC}=\overparen{AC}-\overparen{MC}=\overparen{AM}\)  (3)

Từ (1), (2), (3) suy ra: \(\widehat {ASC}=\widehat {MCA}.\) (đpcm)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan