Bài 32 trang 80 SGK Toán 9 tập 2


Đề bài

Cho đường tròn tâm \(O\) đường kính \(AB\). Một tiếp tuyến của đường tròn tại \(P\) cắt đường thẳng \(AB\) tại \(T\) (điểm \(B\) nằm giữa \(O\) và \(T\))

Chứng minh: \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.

+) Tổng hai góc nhọn trong tam giác vuông bằng \(90^0\)

Lời giải chi tiết

              

Ta có \(\widehat {TPB}\) là góc tạo bởi tiếp tuyến \(PT\) và dây cung \(PB\) của đường tròn \((O)\) nên  \(\widehat {TPB}=\dfrac{1}{2}sđ\overparen{BP}\)(cung nhỏ \(\overparen{BP}\))   (1)

Lại có: \(\widehat {BOP}=sđ\overparen{BP}\)   (góc ở tâm chắn cung \(\overparen{BP}\)).                   (2)

Từ (1) và (2) suy ra  \(\widehat {BOP} = 2.\widehat {TPB}\).

Trong tam giác vuông \(TPO\) ( \(OP \bot TP\) vì \(TP\) là tiếp tuyến) ta có \(\widehat {BOP} + \widehat {BTP}=90^0.\)

hay \(\widehat {BTP} + 2.\widehat {TPB} = {90^0}\).

loigiaihay.com


Bình chọn:
4.1 trên 106 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài