Bài 27 trang 79 SGK Toán 9 tập 2


Đề bài

Cho đường tròn tâm \((O)\), đường kính \(AB\). Lấy điểm khác \(A\) và \(B\) trên đường tròn. Gọi \(T\) là giao điểm của \(AP\) với tiếp tuyến tại \(B\) của đường tròn. Chứng minh:   \(\widehat{APO}\) =\(\widehat{PBT}.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.

Lời giải chi tiết

Ta có: \(\widehat{PBT}\) là góc tạo bởi tiếp tuyến \(BT\) và dây cung \(BP\) chắn cung \(\overparen{PmB}\).

\(\Rightarrow \widehat{PBT} = \dfrac{1}{2} sđ \overparen{PmB}\)   (1)

Lại có: \(\widehat{PAO}\) là góc nội tiếp chắn cung \(\overparen{PmB}\)

\(\Rightarrow \widehat{PAO} = \dfrac{1}{2} sđ \overparen{PmB}\)   (2)

Mặt khác: \(\widehat{PAO}= \widehat{APO}\) (\(∆OAP \, \, cân\, \,  tại \, \,  O)\) (3)

Từ (1), (2), (3), suy ra   \(\widehat{APO} =\widehat{PBT}\) (đpcm)

loigiaihay.com


Bình chọn:
4.3 trên 116 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài