Trả lời câu hỏi 2 Bài 7 trang 29 Toán 9 Tập 1

Bình chọn:
4 trên 10 phiếu

Giải Trả lời câu hỏi Bài 7 trang 29 Toán 9 Tập 1. Trục căn thức ở mẫu:

Đề bài

Trục căn thức ở mẫu:

a) \(\displaystyle {5 \over {3\sqrt 8 }};\,\,{2 \over {\sqrt b }}\) với b > 0

b) \(\displaystyle {5 \over {5 - 2\sqrt 3 }};\,\,\,{{2a} \over {1 - \sqrt a }}\) với \(a \ge 0\) và \(a \ne 1\)

c) \(\displaystyle {4 \over {\sqrt 7  + \sqrt 5 }};\,\,\,{{6a} \over {2\sqrt a  - \sqrt b }}\) với a > b > 0

Phương pháp giải - Xem chi tiết

Ta sử dụng:

a) Với hai biểu thức A, B mà \(B>0,\) ta có

\(\dfrac{A}{\sqrt{B}}=\dfrac{A\sqrt{B}}{B}.\)

b) Với các biểu thức A, B, C mà \(A\geq 0\) và \(A\neq B^{2}\), ta có

\(\dfrac{C}{\sqrt{A}\pm B }=\dfrac{C(\sqrt{A}\mp B)}{A-B^{2}}.\) 

c) Với các biểu thức A, B, C mà \(A\geq 0\), \(B\geq 0\) và \(A\neq B\), ta có:

\(\dfrac{C}{\sqrt{A}\pm \sqrt{B}}=\dfrac{C(\sqrt{A}\mp \sqrt{B})}{A-B}.\) 

Lời giải chi tiết

a) +) \(\displaystyle {5 \over {3\sqrt 8 }} = {{5\sqrt 8 } \over {3\sqrt 8 .\sqrt 8 }} = {{5\sqrt 8 } \over {3.8}} = {5 \over {24}}\sqrt 8 \) 

+) \(\displaystyle {2 \over {\sqrt b }} = {{2\sqrt b } \over {\sqrt b .\sqrt b }} = {2 \over b}\sqrt b \)

b) \(\displaystyle {5 \over {5 - 2\sqrt 3 }} = {{5\left( {5 + 2\sqrt 3 } \right)} \over {\left( {5 - 2\sqrt 3 } \right)\left( {5 + 2\sqrt 3 } \right)}} \\ \displaystyle = {{5\left( {5 + 2\sqrt 3 } \right)} \over {25 - 12}} = {{5\left( {5 + 2\sqrt 3 } \right)} \over {13}}\)

\(\displaystyle {{2a} \over {1 - \sqrt a }} = {{2a\left( {1 + \sqrt a } \right)} \over {\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a } \right)}}\\ \displaystyle  = {{2a\left( {1 + \sqrt a } \right)} \over {1 - a}}\)

c) \(\displaystyle {4 \over {\sqrt 7  + \sqrt 5 }} = {{4\left( {\sqrt 7  - \sqrt 5 } \right)} \over {\left( {\sqrt 7  + \sqrt 5 } \right)\left( {\sqrt 7  - \sqrt 5 } \right)}} \\ \displaystyle = {{4\left( {\sqrt 7  - \sqrt 5 } \right)} \over {7 - 5}} = 2\left( {\sqrt 7  - \sqrt 5 } \right)\)

\(\displaystyle {{6a} \over {2\sqrt a  - \sqrt b }} = {{6a\left( {2\sqrt a  + \sqrt b } \right)} \over {\left( {2\sqrt a  - \sqrt b } \right)\left( {2\sqrt a  + \sqrt b } \right)}} \\ \displaystyle = {{6a\left( {2\sqrt a  + \sqrt b } \right)} \over {4a - b}}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com