Bài 56 trang 30 SGK Toán 9 tập 1

Bình chọn:
4.4 trên 14 phiếu

Giải bài 56 trang 30 SGK Toán 9 tập 1. Sắp xếp theo thứ tự tăng dần

Đề bài

Sắp xếp theo thứ tự tăng dần

a) \(3\sqrt{5};\,\,\,2\sqrt{6};\,\,\,\sqrt{29};\,\,\, 4\sqrt{2}\)

b) \(6\sqrt{2};\,\,\, \sqrt{38};\,\,\,3\sqrt{7};\,\,\, 2\sqrt{14}.\)

Phương pháp giải - Xem chi tiết

+ Sử dụng quy tắc đưa thừa số vào trong dấu căn:

            Với \(A \ge 0,\ B \ge 0\) ta có: \(A\sqrt B =\sqrt{A^2B}.\)

            Với \(A <0,\ B \ge 0\)  ta có: \(A\sqrt B=-\sqrt{A^2B}\).

+ Sử dụng định lí so sánh hai căn bậc hai số học: Với hai số \(a,\ b\) không âm, ta có:

           \(a < b \Leftrightarrow \sqrt a < \sqrt b\).

Lời giải chi tiết

a) Ta có:

\(\left\{ \matrix{
3\sqrt 5 = \sqrt {{3^2}.5} = \sqrt {9.5} = \sqrt {45} \hfill \cr
2\sqrt 6 = \sqrt {{2^2}.6} = \sqrt {4.6} = \sqrt {24} \hfill \cr
4\sqrt 2 = \sqrt {{4^2}.2} = \sqrt {16.2} = \sqrt {32} \hfill \cr} \right.\)

Vì: \(24 < 29 < 32 < 45 \Leftrightarrow \sqrt{24}<\sqrt{29}<\sqrt{32}<\sqrt{45}\)

                                        \(\Leftrightarrow 2\sqrt{6}<\sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)

b)

\(\left\{ \matrix{
6\sqrt 2 = \sqrt {{6^2}.2} = \sqrt {36.2} = \sqrt {72} \hfill \cr
3\sqrt 7 = \sqrt {{3^2}.7} = \sqrt {9.7} = \sqrt {63} \hfill \cr
2\sqrt {14} = \sqrt {{2^2}.14} = \sqrt {4.14} = \sqrt {56} \hfill \cr} \right.\)

Vì: \(38 < 56 < 63 < 72\Leftrightarrow \sqrt{38}<\sqrt{56}<\sqrt{63}<\sqrt{72}\)

                                         \(\Leftrightarrow \sqrt{38}< 2\sqrt{14}<3\sqrt{7}< 6\sqrt{2}\)

Loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan