Bài 49 trang 29 SGK Toán 9 tập 1


Giải bài 49 trang 29 SGK Toán 9 tập 1. Khử mẫu của biểu thức lấy căn

Đề bài

Khử mẫu của biểu thức lấy căn

\(ab\sqrt{\dfrac{a}{b}};\,\,\, \dfrac{a}{b}\sqrt{\dfrac{b}{a}};\,\,\, \sqrt{\dfrac{1}{b}+\dfrac{1}{b^{2}}};\,\,\,\ \sqrt{\dfrac{9a^{3}}{36b}};\,\,\, 3xy\sqrt{\dfrac{2}{xy}}.\)

(Giả thiết các biểu thức có nghĩa).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng các công thức sau:

      + \(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}\),  với \(a \ge 0,\ b > 0 \).

      +  \(\sqrt{a^2}=|a|\)

      +  Nếu \(a \ge 0\) thì \(|a|=a\)

      + Nếu \( a < 0 \) thì \(|a|=-a\)

      + \(\dfrac{a}{\sqrt b}=\dfrac{a\sqrt b}{b}\),   \((b > 0)\).

Lời giải chi tiết

Theo đề bài các biểu thức đều có nghĩa.

+ Ta có

\(ab\sqrt{\dfrac{a}{b}}=ab\sqrt{\dfrac{a.b}{b.b}}=ab\sqrt{\dfrac{ab}{b^2}}=ab\dfrac{\sqrt{ab}}{\sqrt{b^2}}=ab\dfrac{\sqrt{ab}}{\left | b \right |}.\)

*) Nếu \( b > 0\)  thì \(|b|=b \Rightarrow ab\dfrac{\sqrt{ab}}{\left | b \right |}=ab\dfrac{\sqrt{ab}}{b}=a\sqrt{ab}\). 

*) Nếu \( b < 0\)  thì \(|b|=-b \Rightarrow ab\dfrac{\sqrt{ab}}{\left | b \right |}=-ab\dfrac{\sqrt{ab}}{b}=-a\sqrt{ab}\).

+ Ta có:

\( \dfrac{a}{b}\sqrt{\dfrac{b}{a}}=\dfrac{a}{b}\sqrt{\dfrac{b.a}{a.a}}=\dfrac{a}{b}\sqrt{\dfrac{ab}{a^2}}\)

\(=\dfrac{a}{b}.\dfrac{\sqrt{ab}}{\sqrt{a^2}}\)\(=\dfrac{a}{b}.\dfrac{\sqrt{ab}}{|a|}\)\(=\dfrac{a\sqrt{ab}}{b|a|}\)

*) Nếu \(a> 0\) thì \( |a|=a \Rightarrow \dfrac{a\sqrt{ab}}{b|a|}=\dfrac{a\sqrt{ab}}{ab}=\dfrac{\sqrt{ab}}{b} .\)

*) Nếu \(a<0\) thì  \(|a|=-a  \Rightarrow \dfrac{a\sqrt{ab}}{b|a|}=-\dfrac{a\sqrt{ab}}{ab}=-\dfrac{\sqrt{ab}}{b} .\)

+ Ta có:

\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\sqrt{\dfrac{b}{b^2}+\dfrac{1}{b^2}}=\sqrt{\dfrac{b+1}{b^2}}\)

                    \(=\dfrac{\sqrt{b+1}}{\sqrt{b^2}}=\dfrac{\sqrt{b+1}}{|b|}\).

*) Nếu \(b> 0\)  thì \(|b|=b \Rightarrow \dfrac{\sqrt{b+1}}{|b|}=\dfrac{\sqrt{b+1}}{b}\).

*) Nếu \(-1 \le b < 0\)  thì \(|b|=-b \Rightarrow \dfrac{\sqrt{b+1}}{|b|}=-\dfrac{\sqrt{b+1}}{b}\).

+ Ta có:

\(\sqrt{\dfrac{9a^3}{36b}}=\sqrt{\dfrac{9}{36}}.\sqrt{\dfrac{a^3}{b}}=\sqrt{\dfrac{1}{4}}.\sqrt{\dfrac{a^3.b}{b.b}}\)

\(=\dfrac{1}{2}.\sqrt{\dfrac{a^2.ab}{b^2}}\)\(=\dfrac{1}{2}.\dfrac{\sqrt{a^2}.\sqrt{ab}}{\sqrt{b^2}}\)

\(=\dfrac{1}{2}.\dfrac{|a|\sqrt{ab}}{|b|}=\dfrac{|a|\sqrt{ab}}{2|b|}\).

*) Nếu \(a \ge 0,\ b > 0\) thì \(|a|=a,\ |b| =b \Rightarrow \dfrac{|a|\sqrt{ab}}{2|b|}=\dfrac{a\sqrt{ab}}{2b}\).

*) Nếu \(a < 0,\ b < 0\) thì \(|a|=-a,\ |b| =-b \Rightarrow \dfrac{|a|\sqrt{ab}}{2|b|}=\dfrac{a\sqrt{ab}}{2b}\).

(Chú ý: Theo đề bài \(\sqrt{\dfrac{9a^3}{36b}}\) có nghĩa nên \(a,\ b\) cùng dấu, do đó chỉ cần xét 2 trường hợp \(a,\ b\) cùng âm hoặc cùng dương). 

+ Ta có:

\(3xy\sqrt{\dfrac{2}{xy}}=3xy.\sqrt{\dfrac{2.xy}{xy.xy}}=3xy.\dfrac{\sqrt{2xy}}{\sqrt{(xy)^2}}\)

\(=3xy.\dfrac{\sqrt{2xy}}{|xy|}\) \(=\dfrac{3xy.\sqrt{2xy}}{xy}=3\sqrt{2xy}\).

(Vì theo đề bài \(\sqrt{\dfrac{2}{xy}}\) có nghĩa nên \(\dfrac{2}{xy} > 0 \Leftrightarrow xy > 0 \Rightarrow |xy|=xy\).) 

Logiaihay.com


Bình chọn:
4.1 trên 120 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài